
A New Approach to Isomorphism in Attributed
Graphs

Juan Mendivelso # and Yoan Pinzón ∗

Abstract—Attributed graphs are widely used in many ap-
plication domains, for example to model social networks. An
attributed graph is a graph in which vertices and edges may
have types and other attributes. Different query models have
been developed to obtain information from attributed graphs.
One of the most important is graph pattern matching, which is
the problem of finding all the instances of the pattern graph P
in the attributed graph G under graph isomorphism. A pattern
graph may specify both structural requirements and predicates
on attributes of the graph elements. We propose a novel technique
that linearizes the pattern graph and matches such linearization
against the attributed graph. We derive heuristics to produce
a linearization that places selective predicates at the beginning.
We implement the algorithm and our results show that our
optimizations based on the attributed graph statistics are effective
in querying attributed graphs.

Keywords—Social Networks, Semantic Web, Information Re-
trieval, Databases

I. INTRODUCTION

Graphs are highly interesting data structures due to their
considerable expressive power that allows them to represent
real-word phenomena in diverse areas [1], [2], [3], [4], [5],
[6], [7], [8]. A graph G(V,E) consists of a set of vertices
V and a set of edges E, where the edges are ordered pairs
of the vertices that represent links between them. A graph is
attributed if its vertices and/or edges contain attributes. For
instance, in Figure 1, we show an example of a social net-
work where vertices represent people and photos while edges
establish friendship and person-tagged-in-photo relationships.

In recent years, the burgeoning use of graphs has con-
siderably increased the need for efficient graph matching
algorithms. The graph pattern matching problem consists
of finding all the subgraphs in an attributed graph, called
the data graph, that satisfy the structural requirements and
predicates specified by a query graph, called the pattern graph.
The structural requirements establish a graph isomorphism
requirement for the output subgraphs with respect to the pattern
graph. Furthermore, the predicates on the node attributes and
the edge attributes of the pattern graph further restrict the
output subgraphs. For example, considering the social network
presented in Figure 1, we may want to retrieve the pairs of
friends that are tagged in a photo where one of them is a
female. Then, the pattern graph can be defined as in Figure 2(a)
and the output obtained is shown in Figure 2(b) and (c).

Pattern matching (also called subgraph matching and sub-
graph isomorphism) is an NP-Complete problem [9]. One of

Fundación Universitaria Konrad Lorenz
∗ Universidad Nacional de Colombia

id = Photo 2
type = photo

location = NYC

frien
d

friend

ta
g

ta
g

friend

id = Dave
type = person

sex = male

id = Photo 3
type = photo

id = Bob
type = person

sex = male

id = Alice
type = person
sex = female

id = Chris
type = person

sex = male

id = Photo 1
type = photo

tag

tag
tag

tag

Fig. 1. Example of a social network represented as an attributed graph.

the first algorithms for solving this problem was proposed by
Ullmann in 1976. There are several techniques to improve
different aspects of the algorithm, for example by applying
search-pruning methods [10], [2]. More recently, a graph
linearization technique was developed to solve graph isomor-
phism [11]; in particular, a Graph Linearization Algorithm –
GLA to solve the problem was proposed. However, most of
these approaches consider graphs without attributes and only
match the graph topology. In this paper, we extend the graph
linearization technique to solve the graph pattern matching
problem in attributed graphs; especially, we use the statistics
of the data graph to produce linearizations that work efficiently
in practice.

Furthermore, we also use a string matching technique,
called parameterized matching, to solve graph pattern match-
ing. Parameterized matching allows to find text substrings that
have the same structure of a given pattern string. Our approach
consists of linearizing the pattern graph into a walk p so that we
can look for the walks in the data graph that parameterized-
match p. If such walks also satisfy the predicates, then we
report the subgraphs they represent as matches.

The contributions of this work are the following: (1) We
propose a novel technique to answer pattern matching queries
over an attributed graph (Section II). (2) We develop a 2-
approximate length-optimal linearization algorithm that takes978-1-4799-6717-9/14/$31.00 c©2014 IEEE

ta
g

friendtype = person
sex = female

type = photo
tag

friendid = Alice
type = person
sex = female

id = Bob
type = person

sex = male

id = Photo 1
type = photo

ta
g

friendid = Alice
type = person
sex = female

id = Chris
type = person

sex = male

id = Photo 2
type = photo

location = NYC
tag

(a)

(b)

(c)

type = person

ta
g tag

Fig. 2. Example of the graph matching problem for the data graph presented
in Figure 1. (a) Pattern graph. (b, c) Output reported.

into account the data graph statistics to produce cost-effective
linearizations (Section III). (3) We introduce a matching al-
gorithm that finds the matches of the linearized pattern graph
in the data graph (Section IV). (4) We evaluate the proposed
techniques experimentally and show that they are effective in
reducing query execution time (Section V).

II. OUR APPROACH

We propose to solve the graph pattern matching problem by
pattern graph linearization. To perform pattern graph matching
on a data graph, our algorithm consists of two phases —
linearization phase and matching phase. At the linearization
phase, the linearization algorithm transforms the pattern graph
into an equivalent parameterized walk; and at the matching
phase, our matching algorithm searches for matches of such
parameterized walk in the data graph. These matches also
constitute matches of the pattern graph. This section gives
an overview of the linearization and matching algorithm with
examples.

A linearization algorithm traverses all the vertices and
edges of the pattern graph and produces a linear sequence of
them, which we call the parameterized walk or linearization of
the pattern graph. A linearization is a walk of the entire pattern
graph thus no information of the pattern graph is lost. A lin-
earization must include all the vertices and edges of the pattern
graph at least once. However, as a graph traversal may have
to visit some vertices or edges more than once, a linearization
may include those vertices and edges more than once. The
same vertex/edge that has been visited for multiple times are
represented by the same parameter; different vertices/edges
are represented by different parameters. Moreover, when we
choose different starting vertices and visiting sequences, we
can produce many different linearizations for the same pattern

graph, which is similar as that the same SQL query at a
relational database can have many different physical execution
plans.

For example, the pattern graph in Figure 2(a) has six
linearizations and we list two of them for demonstration:

L1 = P1(vertex,type=photo) P2(edge,type=tag)
P3(vertex,type=person)
P4(edge, type=friend)
P5(vertex,type=person,sex=female)
P6(edge,type=tag) P1

L2 = P1(vertex,type=person,sex=female)
P2(edge,type=tag) P3(vertex,type=photo)
P4(edge,type=tag) P5(vertex,type=person)
P6(edge,type=friend) P1

Note that at both L1 and L2, there are vertices that we
have to visit more than once, and each of these vertices is
represented by the same parameter.

The matching algorithm searches the linearization of the
pattern graph on the data graph to find the walks that satisfy
the query, which are associated to subgraphs of the data graph
that match the pattern graph. Every match is a bijection from
all of the graph elements of the pattern graph to a set of
graph elements in the data graph. For example, Figure 2(b)
and (c) are the matching outputs of Figure 2(a) where there
is a bijection of all graph elements in each output to those of
the pattern graph.

Suppose that a linearization has length m; in theory, the
matching algorithm must compare it with all length-m walks in
the data graph. However, many of these walks are pruned from
the very beginning. For example, if we produce linearization
L1 to represent the pattern graph at Figure 2(a) and match
it with the data graph in Figure 1, the matching algorithm
only needs to start from the vertices of type “photo” as the
walks starting from other vertices will not match. If we produce
linearization L2, we can do even better as we only need to start
the search from vertex “Alice”. This is analogue to relational
databases where several execution plans of the same SQL
query produce the same output but may encounter different
execution cost. Here different linearized walks of the same
pattern graph lead to the same matching outputs but can incur
in different costs. In relational databases, the query optimizer
uses data statistics and optimization heuristics to decide a
better plan with lower expected cost. Here we use the statistics
of the data graph to choose the linearization which is likely
to be cost effective. For example, between the above two
linearizations, L2 has lower matching cost than L1 as the
starting vertex of L2 is more selective and it effectively prunes
the search space by starting from a single vertex “Alice” only.

In the remainder of the paper, we will describe our lin-
earization and matching algorithms in more details and show
how to produce an effective linearization of a pattern graph
leading to low matching cost.

III. LINEARIZATION EXPLOITING GRAPH STATISTICS

We linearize a pattern graph into a linear sequence of
vertices and edges, and we use this linearized sequence as an
input to the matching algorithm to find matching subgraphs.
This section proposes an algorithm that, besides producing

short linearizations, utilizes graph statistics to further reduce
the matching cost.

A. High-Level Ideas

We use an example to illustrate why graph statistics help
to produce efficient linearizations. Let us consider a data graph
G(V,E) and a the pattern graph P (VP , EP). Let color be a
type for the vertices in G(V,E); we assume that 20% of the
vertices in the graph are green, 30% are blue and 50% are red.
Let us consider a pattern graph where a vertex A must be green
and a vertex B must be red. We can start our linearization from
either of them, but starting from A is likely to produce a more
efficient matching process as A has less matches than B; this
helps to prune the search space early. This idea is similar to
the query optimizer in a database system, which often pushes
the most restrictive conditions down to the evaluation tree of
a query plan such that the selective predicates are evaluated
early in the execution.

To formalize these ideas, we define the selectivity degree,
for each graph element ge in the pattern graph. Let ge.Pred
denote the set of the predicates associated to ge and let
P (c,G(V,E)) represent the probability of selecting a graph
element from the data graph G(V,E) that satisfies a predicate
(or condition) c. Thus, the selectivity degree of the graph
element ge can be defined as:

ge.selectivity =
∏

c∈ ge.Pred

P (c,G(V,E)) (1)

Using the selectivity degree of the pattern graph elements
on the data graph, we present a linearization algorithm, called
E-GLA, which gives preference to the most selective graph
elements.

B. Enhanced-Graph Linearization Algorithm - E-GLA

The Enhanced-Graph Linearization Algorithm, i.e. the E-
GLA algorithm for short, starts the linearization from the most
selective vertex (the vertex with the lowest selectivity), and
at each of the following step, it greedily chooses the most
selective adjacent edge-vertex pair. In particular, the selectivity
associated to an edge-vertex pair e = (u, v) and v is calculated
as the product of the edge selectivity and the selectivity of the
vertex that this edge leads to, i.e. e.selectivity∗v.selectivity.
Having more selective edge-vertex pair at the beginning of the
linearization helps to prune the search space at an early stage,
reducing the total matching cost. However, the length of the
linearization is also minimized by E-GLA; specifically, the
strategy for that consists of visiting edges that lead to already
explored vertices before the edges that lead to unexplored
vertices (which are sorted on their selectivity).

1) Pseudocode: The pseudo-code of the E-GLA algo-
rithm is presented in Figure 3. The selectivity of vertices
are computed by procedure COMPUTESELECTIVITY() in Fig-
ure 4 using the definition of Equation 1. Then E-GLA
visits the vertex and its neighbors in a recursive manner by
calling the procedure STATSTRAVERSE(), which is presented
in Figure 5. The selectivity computations and comparisons
of adjacent edge-vertex pairs are processed using procedure
FINDBESTNEIGHBOR() in Figure 6.

Algorithm 1: E-GLA Algorithm
Input: P (VP , EP) Output: p
1. for every e ∈ EP do e.Explored← false
2. for every u ∈ VP do
3. u.Explored← false
4. E ← {(u, v) | v ∈ VP ∧ (u, v) ∈ EP }
5. u.NumUnexploredEdges← |E|
6. ComputeSelectivity(P,G)
7. choose v ∈ VP with min(v.select)
8. StatsTraverse(P, v, p)
9. return p

Fig. 3. E-GLA Algorithm.

Algorithm 4: COMPUTESELECTIVITY Procedure
Input: P (VP , EP), G(V,E)
1. for every ge ∈ (VP ∪ EP) do
2. ge.selectivity ← 1
3. for every c ∈ ge.SemReq do
4. ge.selectivity ← ge.selectivity ∗ P (c,G(V,E))

Fig. 4. COMPUTESELECTIVITY Procedure.

Algorithm 5: STATSTRAVERSE Procedure
Input: P (VP , EP), u, p
1. p.Add(u), u.Explored← true
2. for every e = (u, v) ∈ EP do
3. if !e.Explored ∧ v.Explored then
4. p.Add(e), e.Explored← true, p.Add(v)
5. Decrease NumUnexploredEdges for u and v
6. if there are unexplored graph elements do
7. p.Add(e), p.Add(u)
8. while there are unexplored edges e = (u, v) ∈ EP

9. e = (u, v)← FindBestNeighbor(u, P)
10. p.Add(posE, e), e.Explored← true
11. Decrease NumUnexploredEdges for u and v
12. TraverseGraph(P, v, p)
13. if all graph elements are explored then break
14. p.Add(e), p.Add(u)

Fig. 5. STATSTRAVERSE Procedure.

Algorithm 6: FINDBESTNEIGHBOR Function
Input: u, P (VP , EP) Output: edge
1. min =∞
2. for every e = (u, v) ∈ EP do
3. if !e.Explored then
3. assocSelect = e.selectivity ∗ v.selectivity
4. if assocSelect < min then
5. min = assocSelect, edge = e(u, v)
6. return edge

Fig. 6. FINDBESTNEIGHBOR Function.

2) Length of E-GLA Linearizations: Any linearization al-
gorithm, including length-optimal algorithms, must traverse

each edge of the pattern graph at least once. Given that E-
GLA traverses each edge at most twice, in the worst case,
the length of the walk query generated by E-GLA is at
most 2 times the length of a length-optimal linearization.
Thus, E-GLA is asymptotically length-optimal. However, for
many graphs, even a length-optimal algorithm has to visit
some vertices and edges more than once. Then, the difference
between E-GLA and the optimal solution for a given graph
is typically much less than the worst-case ratio presented. In
comparison to GLA, E-GLA may produce a linearization with
longer length but by exploring selective graph elements earlier,
fewer explorations are required at the matching phase as the
mismatches are likely to be discovered earlier; this observation
is supported by the experiments presented in Section V-B.

3) Complexity Analysis: The complexity of E-GLA is
established by the length of p. As presented in Section III-B2,
p has at most 2 |EP | edges and 2 |EP | + 1 vertices. Each
insertion takes constant time as it is always done at the end
of the list. When a vertex is inserted for the first time, it is
necessary to sort its unexplored adjacent vertex-edge pairs on
their selectivity (Figure 5, lines 8 − 9); this operation takes
O(|VP | lg |VP |). Thus, the total time complexity of E-GLA is
O(|VP |2 lg |VP |).

IV. MATCHING ALGORITHM

The matching algorithm uses the parameterized walk query
— linearization of the pattern graph — on the data graph to
find the walks that satisfy the query. Denote G(VG, EG) as
the data graph, P (VP , EP) as the pattern graph, and p as the
linearization of P with length m. Suppose that q is a length-m
path in G(VG, EG). We say that q matches p iff there exists a
function f such that f(pi) = qi.id, for all 1 ≤ i ≤ m. Let Σp

denote the set of distinct parameters in p. If any parameter
X ∈ Σp occurs at multiple positions i1, i2, . . ., ik in p,
then the corresponding positions in q must refer to the same
graph element in G(V,E), i.e. f(X) = qi1 .id = . . . = qik .id.
Furthermore, f(X) must satisfy the predicates of X and no
other parameter Y ∈ Σp has a mapping f(Y) = f(X).
In other words, a graph element can map to at most one
parameter in the linearization. Every walk q that matches p
represents a subgraph in G(VG, EG) that matches the pattern
graph P as the matching conditions address both the structural
requirements and attribute predicates of the pattern graph. This
section presents a pattern graph matching algorithm, called
PMG, that finds all the matches of the pattern graph in the
data graph.

A. The PMG Algorithm

1) Main Ideas: To find all the matches of a pattern graph
in a data graph, PMG performs two tasks: (1) Decide if a given
length-m walk of the data graph matches the linearization p
of the pattern graph, and (2) Explore all the length-m paths in
the data graph.

The first task of PMG is to determine whether p = p1...m
and a length-m path in G(V,E) match. That is, comparing
pi and qi for i = 1, . . . ,m. Suppose that pi = X and qi
corresponds to a graph element ge in G(VG, EG). Two cases
are considered to match pi and qi:

(i) The position i is the first occurrence of X in p. Then, we
must verify that ge satisfies the predicates specified by X
and that f(Y) 6= ge.id for all Y ∈ Σp. If so, it is a match,
and we establish a new mapping f(X) = ge.id; otherwise,
it does not match.

(ii) The position i is not the first occurrence of X . In this
case, if ge is the same graph element that was formerly
assigned to X , i.e. f(X) = ge.id, it is match; otherwise, it
does not match.

If the verification of either case (i) or (ii) was successful,
we check the next position on if pi+1 matches qi+1; otherwise,
we can conclude that p and q do not match without further
comparisons. If pi and qi satisfy these conditions for all 1 ≤
i ≤ m we conclude that p and q matches.

To perform the second task, PMG traverses the graph
in a breadth-first-search fashion starting from each vertex in
general. (If an index is available to restrict the set of starting
vertices, then matching starts at a subset of the graph vertices).
Suppose that we start from vertex v1 in the data graph. We
first compare p1 and v1. If they match, we compare p2 with
each one of the adjacent edges ej of v1. For the edges ej that
match p2, we try to extend the search by comparing p3 with
the vertices that they lead to. The process continues until pm
is compared against the adjacent elements of f(pm−1) for the
remaining matching walks, if there is any.

Note that at each level i of the BFS tree, we compare
pi with the adjacent elements of f(pi−1) to extend the length-
(i−1) walks that match p1...i−1. If there is a mismatch between
pi and the corresponding graph element in the data graph,
we stop the exploration along this branch of the BFS tree.
Since the mapping functions of the different branches of the
BFS tree are associated with different mapping functions, we
need to record a mapping for each active branch. Whenever a
length-m walk that matches p1...m is found, its corresponding
mapping function f is reported as a match.

2) Pseudocode: Figure 7 presents the pseudo-code of the
PMG algorithm, which takes the linearized pattern graph and
the data graph as inputs and produces all the matched walks in
the data graph as output. The variable ν, called the valuation,
is a mapping of parameters at the linearized pattern graph
and graph elements in the data graph for a given traversed
walk; thus, a valuation represents one matched walk to p.
The set R is the set of all the valuations, which is the
output set. The algorithm starts the BFS exploration from
every vertex v in the data graph by calling the recursive pro-
cedure EXTENDMATCHING() for v. This procedure attempts
to extend the current walk by determining whether the next
parameter on the linearization and a given graph element in
the data graph can be associated; this is evaluated using the
function MATCH() (see Figure 9).

3) Complexity Analysis: The time complexity of PMG is
given by the number of executions of the recursive procedure
EXTENDMATCHING where each one requires constant time.
This number is equal to the number of vertices and edges in
the BFS search trees. In the worst case, P (VP , EP) has no
types and attributes to apply pruning of the tree. Let n denote
the number of vertices in the data graph and d the maximum
number of edges associated to a vertex. The BFS tree rooted
at one of the vertices of the data graph has dm/2e levels of

Algorithm 7: PMG Algorithm
Input: p = p1...m, G(V,E) Output: R
1. ν = {}, R = {}
2. for every v ∈ V do
3. ExtendMatching(v, p, 1, ν,R)
4. return R

Fig. 7. PMG Algorithm.

Algorithm 8: EXTENDMATCHING Procedure
Input: ge, p = p1...m, pos, ν, R
1. if Match(ge, ppos, ν) = true then
2. if i = m do
3. R.Add(copyOf(ν))
4. else if i < m do
5. for each ch ∈ childrenOf(ge) do
6. ExtendMatching(ch, p, pos+ 1, copyOf(ν),R)

Fig. 8. EXTENDMATCHING Procedure.

Algorithm 9: MATCH Function
Input: ge, ppos, ν Output: true/false
1. if ppos.P redicates(ge) and
2. ν.IsCompatible({ppos/ge.ID)}) then
3. ν = ν ∪ {ppos/ge.ID}
4. return true
5. else
6. return false

Fig. 9. MATCH Function.

vertices and bm/2c levels of edges; we just consider the levels
of vertices. The root has 1 vertex and the second level has d
vertices. Each of these d vertices is associated to d−1 vertices
in the third level (as the edges that lead to vertices in upper
levels of the tree are not considered); thus, the third level has
d(d−1) vertices. In general, level i of the tree has

∏i−2
j=0(d−j)

vertices. Thus, the total number of vertices of a BFS tree is:

1 +

dm/2e∑
i=2

i−2∏
j=0

(d− j) ≈ O(ddm/2e−1)

Since a linearized walk alternates between vertices and
edges while starting and ending at a vertex, m is odd. Thus,
O(ddm/2e−1) = O(dbm/2c). As we have a BFS tree starting at
each vertex in the data graph, the total number of vertices vis-
ited, and hence the time complexity of PMG, is O(ndbm/2c).

V. EXPERIMENTAL RESULTS

We evaluate the performance of our approach experimen-
tally to assess the benefits of the proposed techniques. We
show the effectiveness of using graph statistics to optimize
graph linearizations under a variety of data graph sizes and
query graph patterns.

A. Experimental Setup

Implementation. We implement GLA [11], E-GLA, se-
lectivity estimation, graph statistics gathering, and matching
algorithms in C#.
Query pattern graphs. We employ pattern graphs with differ-
ent topologies and sizes. We use complete graphs, path graphs,
cyclic graphs and star graphs. We add predicates to graph
vertices. Specifically, the predicates include the following: (i)
the type of the vertex; and (ii) an interval of possible values
for the attribute.
Data graphs. We generate attributed graphs G(V,E) using the
Recursive Matrix (RMAT) model [12] that generates scale-
free graphs, similar to the types of graphs used in many
applications. We use data graphs with different sizes: |V | =
1024, 16384, 131072, 524288, 1048576. The number of edges
of each graph is |E| = 5 × |V |, representing sparse graphs.
For each graph, vertex types are drawn from a set Σt where
|Σt| = 1%×|V |. Vertex type follows a zipf distribution which
models the popularity of vertex types. We also associate with
each vertex an attribute with a value sampled uniformly from
a set Σa where |Σa| = 100.
Hardware. We perform the experiments on a commodity
server with 3.30 GHz Intel Xeon X5680 CPU with 24 GB
RAM running Windows Server 2008R2. Metrics. Our main
performance metric is the query response time. We report the
number of graph element comparisons as this is the dominant
factor in time complexity. For reference, on our sever, 400000
comparisons are performed per second. We also report the
length of pattern query linearization.

We use data graphs with predicates (types and attributes).
We evaluate how exploiting graph statistics is useful to produce
optimized linearizations and improve query response time.

B. Optimized Linearization Using Graph Statistics

We linearize all the pattern graphs using GLA which does
not consider graph statistics [11], and using E-GLA which
does utilize them. We compare the cost of matching a query
on a data graph using the two linearization algorithms.

Figure 10(a) compares the length of the linearization by
both algorithms for the different queries. Notice that E-GLA
linearizations are equal or slightly longer than the ones of
GLA. For instance, the linearization of the Path 6 pattern graph
is longer for E-GLA; however, this is a good trade-off as we
show next.

Figure 10(b) shows the number of comparisons required
for the matching process using GLA and E-GLA for pat-
tern graphs of different topology and different sizes on the
data graph with |V | = 524288. Notice that the number of
comparisons required in the matching process is significantly
lower when using the linearization produced by E-GLA. This
is because such linearization starts with the vertices associated
with the most selective predicates, the rarest to find in the
data graph. Thus, the search space is considerably pruned. In
particular, although E-GLA may produce optimized lineariza-
tions that are longer than the non-optimized linearizations, the
query processing time (matching time) is much smaller with
the optimized linearization.

The benefits of E-GLA linearization are even more signifi-
cant in bigger data graphs. For example, notice that the greatest

Fig. 10. Experimental comparison of the matching process using GLA and E-GLA linearizations. The pattern graphs are graphs with different topology
(complete, path, cyclic and star graphs) and of different sizes (|VP | = 3, . . . , 6). (a) Linearization length on the same data graph. (b) Number of comparisons
using data graph with |V | = 524288. (c) Number of comparisons using data graph with |V | = 1048576.

number of comparisons for the data graph with |V | = 524288
in Figure 10(b) is almost 60 million using GLA; for the
data graph with |V | = 1048576 in Figure 10(c), the greatest
number of comparisons is more that 100 million comparisons.
In contrast, with E-GLA the number of comparisons is only
0.6 and 1.5 million, respectively.

VI. CONCLUSIONS

This paper proposes a new approach to solve graph pattern
matching over attributed graphs: Query graphs are linearized
into a walk with parameters. Using selectivity estimation and
graph statistics, an enhanced linearization algorithm optimizes
the order of predicates in the linearized walk, placing selective
predicates early in the linearization. We derive a matching
algorithm to match the linearized walk by traversing the
attributed graph. We present linearization and matching al-
gorithms, and analyse their time complexity. We implement
these algorithms and evaluate them over a set of data graphs
and pattern graphs of different sizes and structures. The
experimental results show that our techniques perform well,
and in particular the enhanced linearization algorithm, which
exploits the graph statistics, reducing query response times.

REFERENCES

[1] N. Shadbolt, W. Hall, and T. Berners-Lee, “The semantic web revisited,”
Intelligent Systems, vol. 21, no. 3, pp. 96–101, 2006.

[2] L. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub) graph
isomorphism algorithm for matching large graphs.” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 26, no. 10, pp. 1367–
1372, 2004.

[3] L. Cordella and M. Vento, “Symbol recognition in documents: a
collection of techniques?” J. on Doc. Analysis and Recognition, vol. 3,
no. 2, pp. 73–88, 2000.

[4] H. He and A. Singh, “Graphs-at-a-time: query language and access
methods for graph databases,” in SIGMOD, 2008.

[5] B. Gallagher, “Matching structure and semantics: A survey on graph-
based pattern matching,” in AAAI, 2006.

[6] P. Zhao and J. Han, “On graph query optimization in large networks,”
in VLDB, vol. 3, September 2010, pp. 340–351.

[7] C. Branden and J. Tooze, Introduction to protein structure, Garland,
Ed. Garland New York, 1998, vol. 17.

[8] F. Eichinger, K. Bohm, K.hm, and M. Huber, “Mining edge-weighted
call graphs to localise software bugs,” in KDD, 2008.

[9] M. Garey and D. Johnson, Computers and Intractability: A Guide to
the Theory of NP-completeness. WH Freeman & Co., San Francisco,
1979.

[10] B. Falkenhainer, K. Forbus, and D. Gentner, “The structure-mapping
engine: Algorithm and examples,” Artificial intelligence, vol. 41, no. 1,
pp. 1–63, 1989.

[11] J. Mendivelso, S. Kim, S. Elnikety, Y. He, S.-w. Hwang, and Y. Pinzón,
“Solving graph isomorphism using parameterized matching,” in String
Processing and Information Retrieval. Springer, 2013, pp. 230–242.

[12] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model
for graph mining,” in SDM, 2004.

