
Automated Abstract Certification of Non-interference
with object aliasing in Rewriting Logic

Mauricio Alba-Castro

Abstract—Non–interference is a semantic program property
that assigns confidentiality levels to data objects and prevents
illicit information flows from high to low security levels. In
this paper, we extend a certification technique for confiden-
tiality of Java classes regarding non–interference, in order to
consider objects and object aliasing. The technique is based on
rewriting logic, which is efficiently implemented in the high-level
programming language Maude. Starting from a previous Java
abstract semantics specification written in Maude, we develop
an information flow sensitive Java semantics that allows us to
observe global non-interference properties, with object aliasing.
In order to achieve a finite state transition system, we develop
an abstract Java semantics that we use for secure and effective
confidentiality analysis. We have implemented our methodology
and developed some experiments that demonstrate the feasibility
of our approach.

Keywords—Computer Security, Non–interference, Declarative
Programming, Software engineering.

I. Introduction

Confidentiality is a property by which information that
is related to an entity or party is not made available or
disclosed to unauthorized entities. A user might establish a
confidentiality policy by stipulating that no data that is visible
to other users be affected by confidential data. Such a policy
allows programs to manipulate and modify confidential data
as long as the observable data generated by those programs
do not improperly reveal information about the confidential
data. A security policy of this sort is called a non-interference
policy because confidential data should not interfere with
publicly observable data. Program non–interference is a high–
level security property that guarantees that there is no illegal
information flow through program execution and that the
confidentiality of secret data is kept [19]. To ensure that a
program adheres to a non-interference policy means to analyze
how information flows within the program.

The mechanism for transfering information through a com-
puting system is called a channel. Variable updating, parameter
passing, dynamic object creation, value return, file reading and
writing, and network communication are channels. Channels
that use a mechanism that is not designed for information
communication are called covert channels [19]. There are
covert channels such as the control structure of a program,
termination, timing, exceptions, and resource exhaustion chan-
nels. The information flow that occurs through channels is

Mauricio Alba-Castro, Computer Science Department, Universidad
Autónoma de Manizales UAM, Manizales, Colombia, (email:
malba@autonoma.edu.co).

978-1-4799-6717-9/14/$ 31.00 c©2014 IEEE

called explicit flow because it does not depend on the spe-
cific information that flows. The information flow that occurs
through the control structure of a program (conditionals, loops,
breaks, and exceptions), is called an implicit flow because it
depends on the value of the condition that guards the control
structure. We are interested in both explicit and implicit flows
for non-interference with object aliasing analysis. However, in
this paper we do not consider channels such as file reading and
writing, and network communication, neither covert channels
such as exceptions, termination, timing, and resource exhaus-
tion channels.

Non–interference policies label data objects with their
confidentiality levels (usually two levels, High and Low) and
allow only information flows from Low data objects to High
data objects. In order to express confidentiality policies, we
use the syntax of JML, Java modeling language [16], which
is a property specification language for Java modules. The
JML annotations may include the modifier model within fields,
methods and classes declarations. The model declarations are
used for specification purposes only and cannot appear in
executable Java code. The initial confidentiality level of a
variable in a Java program is written with the word setLabel
as a model JML annotation (e.g. setLabel(var, High)). The
confidentiality label of program variables is Low if nothing is
specified (i.e., program variables are public by default). These
JML-like annotations, together with the default assumption,
define the labeling function of the non–interference policy.

Example 1: Consider the following Java program bor-
rowed from [12] that models a bank account:

public class Account { int balance;
//@ setLabel(balance, High);
public boolean extraService;
public Account(int initialamount) {
//@ setLabel(initialamount, High);
balance = initialamount; extraService = false; }

public void writeBalance(int amount) {
//@ setLabel(amount, High);
if (amount>=10000) extraService=true;
else extraService=false; balance = amount; }

private int readBalance() {return balance;}
public boolean readExtra() {return extraService;}

}

This non-interference policy specifies that the object field
balance holds secret data and that the formal parameters
initialamount and amount of the object methods also hold
secret data. The method writeBalance has implicit and

explicit flows 1. This program is insecure w.r.t. this policy
since an observer with low access rights can obtain partial
information about the variable balance via an observation
of the non–secret variable extraService (namely whether
amount >= 10000).

A pointer is an object reference. A pointer alias means that
there are more than one reference to a given object. Most non–
interference works assume that the object references -i.e. the
pointers to objects- are opaque [6], [7]. This means that we
don’t know their values. The attacker can only see the object
to which it points, and at most she can test pointer equality [5],
[14]. Pointer aliasing happens in many Java programs, and may
leak confidential information, as shown by the next example.

Example 2: Consider a simple Java version of an example
borrowed from [4]. In this example we have two objects of
class Z whose references are stored in the variables p and q,
which are assumed Low–labeled by default. The objects have
a Low–labeled field (info). In line A, the program creates an
object alias in the variable z. The annotation setLabel sets
the confidentiality label of the variables z and h to High.

class Safe1NIAlias03 {
public static void main(String[] args) {
Z z; //@ setLabel(z, High);
int h = 8; //@ setLabel(h, High);
Z p,q; boolean l; // Low
p = new Z(); // object 1
q = new Z(); // object 2
if (h > 7) // LINE A
z = p; // z aliases p

else z = q; // z aliases q
z.info = 42; // LINE B
if (p.info == 42) // LINE C
l = true; // h > 7

else l = false; // h <= 7
System.out.println(l); } }

class Z { int info; // Low }

The program in line A, creates and stores an object alias of
an object reference, either p or q, in a High–labeled variable
z, depending on the value of the High–labeled variable h.
The implicit flow in line A is licit because z and h are both
High–labeled variables. In line B, the Low–labeled field info
is licitly updated with a constant (all program constants are
Low–labeled) using the High–labeled reference z. In line C, the
Low–labeled variable l is updated by a constant, either true or
false, depending on the value of the Low–labeled field info
of the object referenced by p. In spite of the fact that implicit
flow of line C is licit because of the Low–labeled expression
guard, after line C execution, we have in l information of the
secret variable h.

In [2], we proposed an abstract methodology for certifying
Non-interference of Java source code, as a safety property. It is
based on Rewriting logic (RWL) and is implemented in Maude
[10], which is a high-performance language that implements
RWL.

The methodology of [2] is the following. Consider a Java

1A explicit flow is associated to an assignment or memory write,
e.g. the assignment “balance = amount”. An implicit flow is associated
to a control flow guard expression using variables with a high confi-
dentiality level, e.g. “if (amount >= 10000) extraService = true; else
extraService = false;”.

program together with a specification of the Java semantics.
The Java program is a concrete expression (i.e., term) that
represents the initial state of the Java interpreter running the
considered Java program. The Java semantics is a specification
in Maude. Given a safety property the unreachability of the
system states that denote the events that should never occur
allows us to infer the desired safety property. Unreachability
analysis is performed using the standard Maude (breadth–first)
search command, which explores the entire state space of
the program from an initial system state. In the case where
the unreachability test succeeds, the corresponding rewriting
proofs that demonstrate that those states cannot be reached
are delivered as the expected outcome certificate. Very often
the unreachability test does not succeed because there is an
infinite search space; thus, we achieve a finite search space
by using abstraction [11]. In our methodology, certificates are
encoded as (abstract) rewriting sequences that (together with
an encoding of the abstraction in Maude) can be checked by
standard reduction. Our methodology is an instance of Proof–
carrying code (PCC), a mechanism originated by Necula [18]
for ensuring the secure behavior of programs.

This article extends the full-fledged formulation of the
abstract global non–interference certification methodology of
[2] to consider objects with confidentiality level labels and
object aliasing, which allow us to analyze confidentiality of
more realistic programs.

We provide a clear–cut information flow sensitive seman-
tics of Java programs that deal with non–interference, and
object aliasing. This semantics is formulated as an extension
of the operational Java semantics of [13] written in Maude.
Such a new information flow semantics provides a unifying
model for dealing with non–interference of programs with
objects and object aliasing as safety policies. We provide an
abstract, finite-state version of the information flow operational
semantics which supports finite program verification. Thanks
to the different handling of rules and equations in Maude, our
methodology does not suffer from the state–space explosion
of more traditional approaches. Our Java certification method-
ology can be applied to existing Java programs simply by
inserting the confidentiality annotations of the desired policy.
As a by–product of the verification, a certificate is delivered
which consists of a set of (abstract) rewriting proofs that can
be easily checked by the code consumer using a standard
rewriting logic engine. For the best of our knowledge, this
is the first adaptation of the PCC principle to static analysis of
non–interference and object aliasing based on term rewriting .
We have implemented this framework, as an extension of the
Non–interference with and without erasure framework of [3].

The paper is organized as follows. Sections II and III
introduce, respectively, the non-interference policy, and the
rewriting logic semantic specification of Java we have used.
Section IV summarizes the proposed extended rewriting logic
data flow-sensitive semantic specification of Java that include
objects with confidentiality levels together with fields with
confidentiality levels, dynamic object creation, method invo-
cations, and object aliasing. Section V describes the abstract
semantics that corresponds to the concrete extended version
introduced in Section IV. Section VI discuss related work and
Section VII draw some conclusion and future work.

2

II. Non–interference Policies

A non-interference policy establishes a confidentiality level
for each source program variable of primitive datatypes. It
guarantees that actual values of variables with a higher confi-
dentiality level do not influence the output of a variable with
a lower confidentiality level during program execution [19]. It
is implicitly assumed that constants that appear in a program
always have the lowest confidentiality level (i.e., the considered
program is authorized to access secret data, but it does not
contain secret data in its code).

A non-interference policy can be represented [2] by a par-
tially ordered set 〈Labels,≤〉 and a labeling function Labeling :
Var → Labels, where Labels is the finite set of confidentiality
levels, ≤ is a partial order between confidentiality levels,
and Var is the set of source program variables [15]. There
are usually two confidentiality levels: Labels = {Low, High}.
These represent public non-secret data (low confidentiality)
and secret data (high confidentiality), respectively. 〈Labels,≤〉
forms a lattice where Low is the greatest lower bound or bottom
element (⊥), High is the least upper bound or top element (>),
Low ≤ High, and High � Low. The join operator (t) is defined
as Low t Low = Low; otherwise, X t Y = High. Enforcing
non-interference means that the values of Low-labeled source
variables can flow to High-labeled source variables. However,
it also means that the values of High-labeled source variables
cannot flow to Low-labeled source variables. The attacker
model for global non–interference that we formalize below
assumes that the attacker is passive and can only see the Low-
labeled source variables of the Java program at the initial and
final states and not at the intermediate states (i.e., temporal
security breaches are only relevant if they influence a variable
that can be observed at the final state).

We assume a fixed Java program PJava. Vars(PJava) denotes
the set of variables of PJava. We denote the set of Low
program variables as Low(PJava) = {var ∈ Vars(PJava) |

Labeling(var) = Low}. A program state S t is a set of value
assignments to program variables. Given var ∈ Vars(PJava) and
a state S t, S t[var] denotes the value of variable var in S t. If the
variable var does not exist in the state S t, then S t[var] is not
defined. We model a Java program PJava as a state transition
system between pairs 〈P, S t〉, where P is the current, still-to-be-
executed part of the Java program PJava and S t represents the
current program state. 〈PJava, S t0〉 denotes the initial configura-
tion of standard program execution and 〈X, S t〉 denotes a final
configuration, where X stands for the empty program. Note
that we assume that every Java program properly terminates
for each set of input data (i.e., we do not consider non-
terminating programs, deadlocks, or runtime errors). We also
do not consider Java threads, therefore only deterministic Java
programs are analysed. 7→Java is the transition relation that de-
scribes any possible one-step transition between any two Java
program states. An execution (or trace) of PJava is a sequence
〈PJava, S t0〉 7→Java · · · 〈Pi, S ti〉 7→Java · · · 7→Java 〈X, S tn〉,
which is simply denoted by 〈PJava, S t0〉 7→∗Java 〈X, S n〉 if
the intermediate states are irrelevant. We can also abbreviate
〈X, S n〉 by 〈S n〉.

We define in [2] program non–interference by using an
equivalence =Low relationship between states [19]. Roughly
speaking, non-interference establishes that any two terminating

runs of a program that start from indistinguishable initial states
produce indistinguishable final states.

Definition 1 (State equality [19]): Given a Java program
PJava, two states S t1 and S t2 for PJava are indistinguishable
at the confidentiality level Low, written S t1 =Low S t2, if for
all var ∈ Low(PJava), S t1[var] = S t2[var].

What the attacker can see from a final state is determined
by a relation ≈Low. Two executions of a program PJava are
related by ≈Low if they are indistinguishable to the attacker
[19]. The notion of non–interference is therefore parametric
on ≈Low, which defines the attacker capabilities. A program
is non–interferent if, whenever different initial program states
are indistinguishable at level Low, this implies that the corre-
sponding final states are also indistinguishable at level Low.

Definition 2 (Non–interference [19]): A Java program
PJava is non–interferent iff for every pair of different
program initial states S t1 and S t2, and for their
corresponding final program states S t′1, S t′2 such that
〈PJava, S t1〉 7→∗Java 〈S t′1〉, 〈PJava, S t2〉 7→∗Java 〈S t′2〉, we have
that S t1 =Low S t2 ⇒ S t′1 ≈Low S t′2.

We follow in [2] the standard approach in the literature
that considers S t ≈Low S t′ iff S t =Low S t′. Then, the non–
interference condition of Definition 2 is understood as the lack
of any strong dependence of Low-labeled variables on any of
the High-labeled variables [19].

Non–interference was characterized as an hyperproperty
[9]. This means that it cannot be analysed by checking sets
of program traces. Instead, it have to be analysed by checking
sets of sets of program traces.

For instance, the verification process for non-interference
should check the (possibly infinite) set of (possibly infinite)
sets of final states issued from the (possibly infinite) sets of
indistinguishable initial configurations. In contrast, the veri-
fication process for a safety property should simply check
the traces issuing from the (possibly infinite) set of initial
configurations, which is much simpler.

III. The Rewriting Logic Semantics of Java

In the following, we briefly recall the rewriting logic
semantics of Java that was originally given in [13] .

In [13], a sufficiently large subset of full Java 1.4 language
is specified in Maude. However, Java native methods and many
of the available Java built–in libraries are not supported. The
specification of Java operational semantics is a rewrite theory:
a triple RJava = (ΣJava, EJava,RJava) where ΣJava is an order–
sorted signature; EJava = ∆Java]BJava is a set of ΣJava–equational
axioms where ∆Java is a set of terminating and confluent
(modulo BJava) equations and BJava are algebraic axioms such
as associativity, commutativity and unity. Finally, RJava is a set
of ΣJava–rewrite rules that are not required to be confluent nor
terminating.

Intuitively, the sorts and function symbols in ΣJava describe
the static structure of the Java program state space as an alge-
braic data type; the equations in ∆Java describe the operational
semantics of its deterministic features; and the rules in RJava
describe its concurrent features. Following the rewriting logic
framework, we denote by u →r

Java v the fact that the concrete

3

---Obtain variable location and evaluate expression
eq k(Var = E -> K) env([Var, Loc] Env) =
k(E -> =(Loc) -> K) env([Var, Loc] Env) .

---Assign value to location
eq k(Val -> =(Loc) -> K) =
k([Val -> Loc] -> (Val -> K)) .

---General procedure to update the memory
eq k([Val -> Loc] -> K) store([Loc,Val’] ST) =
k(K) store([Loc,Val] ST) .

Fig. 1. Continuation-based equations for the Java assignment operator

terms u, v (which denote Java program states) are rewritten (at
the top position) by using r, which is either a rule in RJava or
an equation in ∆Java (both of which are applied modulo BJava).
We simply write u →Java v when the applied rule or equation
is irrelevant. We denote by →∗Java the extension of →Java to
multiple rewrite steps (i.e., u →∗Java v if there exist u1, . . . , uk
such that u→Java u1 →Java u2 · · · uk →Java v).

The rewrite theory RJava is defined on terms of a concrete
sort State, with the main state attributes (represented by means
of constructor symbols of the algebraic type State) such as in,
out, fstack for handling function calls, lstack for handling
loops, env for assignments of variables to memory locations,
and store for assignments of memory locations to their actual
values. They define an algebraic structure that is parametric
w.r.t. a generic sort Value that defines all the possible values
returned by Java functions or stored in the memory. For
instance, the int and bool constructor symbols describe Java
integer and boolean values and are defined in Maude as
“op int : Int→ Value .” and “op bool : Bool→ Value .”,
where Int and Bool are the internal built–in Maude sorts that
define integer and boolean data types. Intuitively, equations in
∆Java and rules in RJava are used to specify the changes to the
program state (i.e., the changes to the memory, input/output,
etc).

The semantics of Java is defined in a continuation-based
style and specified in Maude itself. Continuations maintain
the control context, which explicitly specifies the next steps
to be performed. The sequence of actions that still need
to be executed are stacked. We use letters K, K′ to denote
continuation variables, letters E, E′ to denote expressions to
be evaluated, and Val, Val′ to denote values (i.e., the result
of evaluating an expression). Once the expression e on the
top of a continuation (e -> k) is evaluated, its result will be
passed on to the remaining continuation k. The semantics
of the assignment operator for the Java variables is specified
in Figure 1.Due to space limitations we do not discuss here
object creation neither heap manipulation.

IV. Analysing Non–interference with object aliasing by
using an Extended Instrumented Semantics

In previous paper [2], we prove non-interference as a
safety property by instrumenting the Java semantics in order
to dynamically keep track of the change of the confidential-
ity labels of program variables. We consider simple valued
variables, i.e. primitive type variables, integer, character, and
so on. Intuitively, the semantic instrumentation is defined
as follows: i) attach a confidentiality label to each memory
location; this allows us to observe their confidentiality level
at the final execution state; ii) attach a confidentiality label

to the evaluation of program expressions; this allows us to
know whether the evaluation of an expression involves high
confidentiality data. iii) associate a confidentiality label to the
evaluation of program statements, particularly those involving
conditional expressions or guards; this allows us to determine
whether the control flow at a given execution point depends
on the actual value of high confidential variables; However,
this label is not attached to each program statement; rather
it is kept as an extra attribute of states in the extended Java
semantics; this corresponds to the notion of a context label
being updated after each evaluation step in [15].

This extended semantic keep track of the initial and final
confidentiality level label of memory locations, and it allows
us to check whether a secret value from some High–labeled
variable is stored in the memory location of a public Low–
labeled variable when program ends execution.

One solution to the problem of object aliasing depicted by
Example 2 is to forbid updating of Low–labeled fields of High–
labeled objects in every case, as proposed in [5]. This solution
is sound but imprecise. There are non–interferent programs
that do not have object aliasing and update Low–labeled fields
of High–labeled objects. A precise solution should do aliasing
analysis in order to forbid updating of Low–labeled fields in
High–labeled objects, only if the updated object has an alias
with different confidentiality label.

In order to consider objects and pointer alias, we extend
this framework as follows: i) attach confidentiality labels to the
memory locations that store objects; ii) attach a confidentiality
label to the evaluation of class field access expressions; the
label of expression z.info in Example 2 is Labeling(z) u
Labeling(info), where Labeling(z) is the confidentiality label
of the reference z and Labeling(info) is the confidentiality
label of the field info that corresponds to the object ref-
erenced by z as in [5]; iii) associate a confidentiality label
to the evaluation of method invocations; given that acc is a
reference to an Account object of Example 1, the command
acc.writeBalance(100); temporarily stores and sets up the
context level to the confidentiality label of the reference acc;
when method ends execution the context label is restored;
iv) analyse pointer aliasing when variable updating; in case
of updating of a Low–labeled field in High–labeled objects,
we check if the object has a reference alias with different
confidentiality label; in this case, we set up the confidentiality
label of the updated field to the joining of confidentiality label
of the object and the confidentiality label of the expression,
as in [5]; after executing the assignment z.info = 12 in line
B of Example 2, the new confidentiality label of field info
is Labeling(z) u Labeling(12), i.e. High; then, the guard
expression p.info in line C has the label Low � High, which
means that there is an implicit illicit flow, and the program is
interferent.

The extended semantic specification for the memory updat-
ing of Java variables with object aliasing is shown in Figure 2.
Figure 3 shows the final state of the extended computation of
Example 2. The store keep the location, the value and the id of
the owner thread (a triplet). The extended value is a triplet that
consist of the concrete value of the variable, together with it’s
confidentiality level label and the erasure policy if any. The
equation is used when executing the assignment z.info = 12
in line B of Example 2. L is the location (l(7)) of the object

4

---Memory updating with aliasing
ceq t(k(< V, SLab2 , Pol2 > -> (obLoc (L’) ->

(=(L) -> K))) TC)
store([L’, < o(OA), Lab’, Pol’ >, I’]

[L’’, < o(OA), Lab’’ , Pol’’ >, I’’] ST)
= t(k([< V, SLab2 join Lab’ , Pol2 join Pol’ >

-> L] -> (< V, SLab2 , Pol2 > -> K)) TC)
store([L’, < o(OA), Lab’, Pol’ > , I’]

[L’’, < o(OA), Lab’’ , Pol’’ > , I’’] ST)
if L’ =/= L’’ /\ Lab’ =/= Lab’’

Fig. 2. Continuation-based equation for the extended Java assignment
operator

out(pl(< bool(true),Low >> High,nopol >))
store(
[l(2),< o(f([t(t(’Z)),f([’info,l(7)])]) curr(t(’Z))

orig(t(’Z))),High,nopol >,0]
[l(4),< o(f([t(t(’Z)),f([’info,l(7)])]) curr(t(’Z))

orig(t(’Z))),Low,nopol >,0]
[l(6),< bool(true),Low >> High,nopol >,0]
[l(7),< int(42),Low >> High, nopol >,0])

Fig. 3. Partial final state of example 2

field info, L′ is the location (l(2)) of variable z which is a
pointer to the object, and L′′ is the location (l(4)) of variable
p another object pointer (that in this case also references
the same object, i.e. the object alias), and OA are the object
attributes. The constructor obLoc is used to keep the location
of the object whose field is being updated.

Note in Figure 3 that the output value has the label Low �
High which means that a High labeled value was stored in the
Low labeled variable l in location l(6). Note also that variable
z (with location l(2)) and variable p (l(4)) both references
the same object whose field info is stored in location (l(7)).
The integer value of the field info (i.e. int(42)) are also
labeled Low � High, which means precisely that another illicit
information flow happens in this example.

Here we recall our novel characterization of non-
interference as a safety property based on the sensitive flow
extended semantic of [2]:

Definition 3 (Strong Non-Interference): A Java program
PJava is strongly non–interferent for a given labeling function
if for every extended initial state S tE

1 and for its corresponding
final program state S tE

2 given by 〈PJava, S tE
1 〉 7→

∗

JavaE 〈S tE
2 〉,

we have that for all var ∈ Low(PJava), S tE
2 [var] = 〈Val, Low〉

for a value Val.

The soundness proof of our extended semantic with pointer
aliasing is similar 2 to the soundness proof of the extended
semantics of [2] whose details can be founded in [1] then
omitted here.

V. Approximating Non–interference with pointer aliasing
by using an Abstract Semantics

In the following, we develop an abstract, rewriting logic
Java semantics that allows us to statically analyse global
non–interference with objects and pointer aliasing. Similar
to [2], the purpose of the abstract semantics is to correctly
approximate the extended computations in a finite way. Given

2When object variable updating, we just consider the additional case where
the object to be updated has an alias.

the extended Java semantics, where there are concrete labeled
values, we simply get rid of the values in the abstract se-
mantics, and use their confidentiality labels as the abstract
values instead. There is one important exception to this: to
abstract a dynamic object creation, we do keep the object but
remove the data from its fields. However, we still maintain the
confidentiality labels of each field.

We develop an abstract version of the extended rewriting
logic semantics of Java developed in Section IV, which we
describe by the rewrite theory RJava# = (ΣJava# , EJava# , RJava#),
EJava# = ∆Java#] BJava# and its corresponding →Java# rewriting
relation. As in Section IV, our approach for the abstract Java
semantics consists of modifying the original theory RJavaE (tak-
ing advantage of its modularity) by abstracting the domain to
(Labels∪LabelChange) and introducing approximate versions
of the Java constructions and operators tailored to this domain.

In this section, our abstraction function α : ℘(StateE) →
℘(StateE) is a simple homeomorphic extension to sets of states
of the function 2nd : Value× (Labels ∪ LabelChange) →
(Labels∪ LabelChange), meaning that we disregard the actual
values of data.

A program is non–interferent for a given labeling function
if the abstract values (the confidentiality labels) of the Low
variables in the final state of an abstract program execution do
not have the label Low � High [2]:

Theorem 1 (Abstract Non-Interference Soundness): Given
a Java program PJava, PJava is non–interferent (Definition 2)
if for all S S t1 ∈ ℘(StateE) s.t. 〈PJava, S S t1〉 7→∗Java# 〈S S t2〉,
for all S t ∈ S S t2, and for all variables var ∈ Low(PJava),
either S t[var] = Low, or S t[var] = 〈Ob ject, Low〉 for an object
Ob ject.

The soundness of our abstract interpretation is similar to
[2]. First, we have to consider the soundness of the abstraction
function α. This is done by proving that this abstraction
function and a corresponding concretization function, both
constitute a Galois insertion[11]. Then we have to proof the
soundness of the abstract computation, i.e. that all extended
program traces and states have corresponding abstract program
traces and states such that no extended program trace (state)
is disregarded. The proof is by induction on the length n of
the extended program trace or rewriting sequence denoted by
〈PJava, S tE

1 〉 7→
∗

JavaE 〈S tE
2 〉 (n is also the length of the corre-

sponding abstract program trace 〈PJava, S S t1〉 7→∗Java# 〈S S t2〉).
The details of the two proofs are similar to Chapter 6 in [1]
hence omitted here.

The certification methodology presented here has been im-
plemented in Maude. The prototype system has been tested by
using examples (and variations on them) with pointer aliasing
borrowed from [4], [5], and it is able to check confidentiality
global program properties related to non–interference with
pointer aliasing analysis. Here http://wp.me/p3E3QQ-1E, we
have the extended and abstract Java semantic and several exam-
ples, together with their corresponding traces and certificates.

VI. RelatedWork

Most works about non-interference and object aliasing
propose sensitive-flow labeled type systems unlike the work [4]
which uses a Hoare-like logic based information flow analysis,

5

and ours, based on rewriting logic. There are many works
that combine static and dynamic analysis [6], [17] while some
others use only static analysis [5], [14], [7] as our approach.
The Jif proposal [17], a Java extension for information flow,
approach to non–interference , together with our’s are imple-
mented, unlike the above cited. However, Jif doesn’t consider
object aliasing, and it haven’t a soundness proof because of
its dynamic analysis. Unlike the approaches in [4], [17] and
our’s, most works don’t allow temporary breaches: it doesn’t
accept secure programs that have interferent subprograms.
We consider that different objects may have different security
levels even objects of the same class, unlike the proposals [5],
[6]. In order to control field updating regarding object aliasing,
most type-system based proposals uses a local method context
security level as a lower bound of the object fields that can
be updated, called the heap effect [5], [6], [7]. Unlike [14],
we and most works assume opaque pointers. The works [7],
[17] considers exception analysis while most, including ours,
it doesn’t. The considered realistic languages are: Jif, a Java
extension, a subset of the JVM [7], [8] and Java (our proposal).
However, the work [8] do not include method calls, exceptions
and threads. The approach of [4] abstracts sets of concrete
memory and heap locations into abstract locations that have
abstract addresses. This abstraction allows them to analyse
programs with an unbounded number of object instances.

Our proposal considers that objects and object fields have
security levels, objects of a given class can have different
security levels, we can deal with object creation, method calls,
allows temporary breaches, and unlike all works above, it
can generate a formal proof, or a counterexample, regarding
program security. However we cannot handle programs with
threads, exceptions and unbounded number of object instances,
neither to analyse non opaque pointers.

VII. Conclusion

In this paper, we extend a framework for automatically
certifying global non–interference of Java sequential programs
with objects and regarding object pointer aliasing, but assum-
ing opaque pointers and a fixed size memory. The proposed
framework fully accounts for explicit as well as implicit flows,
and allows the inference of rewriting logic safety proofs, thus
providing support for the code producer in proof-carrying
code. Actually, the steps that the abstract semantics takes are
recorded in order to construct a certificate ensuring that the
program satisfies the desired property.

Since our approach is based on a rewriting logic semantics
specification of the full Java 1.4 language the methodology
developed in this work can be easily extended to cope with
exceptions, heaps, and multithreading since they are considered
in the Java rewriting logic semantics.

Future work includes relaxing opaque pointers assump-
tion, abstraction of memory locations, programmed exceptions,
threads and considering declassification policies (controlled
ways of downgrading secret information)[20].

References

[1] M. Alba-castro. Abstract Certification of Java Programs in Rewriting
Logic. PhD thesis, Technical University of Valencia UPV, DSIC, 2011.
Available at: http://dialnet.unirioja.es/servlet/tesis?codigo=24228.

[2] M. Alba-Castro, M. Alpuente, and S. Escobar. Abstract certification
of global non-interference in rewriting logic. In Proc. 8th Int. Symp.
Formal Methods for Components and Objects (FMCO 2009), Revised
Lectures., volume 6286 of Lecture Notes in Computer Science, pages
105–124. Springer-Verlag, Berlin Heidelberg, Germany, 2010.

[3] M. Alba-Castro, M. Alpuente, and S. Escobar. Approximating non-
interference and erasure in rewriting logic. In 12th International Sym-
posium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC 2010) Sept. 23-26, Timisoara, Romania, pages 124–132, Los
Alamitos, CA USA, 2010. IEEE Computer Society.

[4] T. Amtoft, S. Bandhakavi, and A. Banerjee. A logic for information
flow in object-oriented programs. In POPL ’06: Conference record
of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 91–102, New York, NY, USA, 2006.
ACM.

[5] A. Banerjee and D. Naumann. Secure information flow and pointer
confinement in a Java-like language. In Proceedings of the 15th IEEE
Computer Security Foundations Workshop (CSFW’02), pages 239–253,
Los Alamitos, CA USA, 2002. IEEE Computer Society.

[6] A. Banerjee and D. Naumann. Stack-based access control and secure
information flow. Functional Programming, 15(2):131–177, 2005.

[7] G. Barthe, D. Pichardie, and T. Rezk. A certified lightweight non-
interference Java bytecode verifier. In Proc. 16th European Symposium
on Programming (ESOP 2007), volume 4421 of Lecture Notes in
Computer Science, pages 125–140. Springer-Verlag, Berlin Heidelberg,
Germany, 2007.

[8] F. Bavera and E. Bonelli. Type-based information flow analysis for
bytecode languages with variable object field policies. In Proceedings
of the 2008 ACM symposium on Applied computing (SAC ’08), pages
347–351, New York, NY, USA, 2008. ACM.

[9] M. R. Clarkson and F. B. Schneider. Hyperproperties. In Proc. IEEE
21st Computer Security Foundations Symp. (CSF’08), pages 51 – 65,
Los Alamitos, CA USA, 2008. IEEE Computer Society.

[10] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer,
and C. Talcott. All About Maude: A High-Performance Logical Frame-
work, volume 4350 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin Heidelberg, Germany, 2007.

[11] P. Cousot and R. Cousot. Systematic Design of Program Analysis
Frameworks. In Proc. of Sixth ACM Symp. on Principles of Program-
ming Languages, pages 269–282, New York, NY, USA, 1979. ACM.

[12] A. Darvas, R. Hahnle, and D. Sands. A theorem proving approach to
analysis of secure information flow. In second international conference
on Security in Pervasive Computing(SPC2005), volume 3450 of Lecture
Notes in Computer Science, pages 193–209. Springer-Verlag, Berlin /
Heidelberg, Germany, 2005.

[13] A. Farzan, F. Chen, J. Meseguer, and G. Rosu. JavaRL: The rewriting
logic semantics of Java. Available at http://fsl.cs.uiuc.edu/index.php/
Rewriting Logic Semantics of Java, 2007.

[14] D. Hedin and D. Sands. Noninterference in the presence of non-opaque
pointers. In Proc. 19th IEEE Computer Security Foundations Workshop
(CSFW’06), pages 217–229, 2006.

[15] S. Hunt and D. Sands. On flow-sensitive security types. In Conf.
record of the 33rd symposium on Principles of programming languages
(POPL’06), pages 79–90, New York, NY USA, 2006. ACM.

[16] G. Leavens, A. Baker, and C. Ruby. Preliminary design of JML: A
behavioral interface specification language for Java. ACM SIGSOFT
Software Engineering Notes, 31:1–38, May 2006.

[17] G. Malecha and S. Chong. A more precise security type system for
dynamic security tests. In Proceedings of the 5th ACM SIGPLAN
Workshop on Programming Languages and Analysis for Security PLAS
10 June 10, 2010 Toronto, Canada. ACM New York.

[18] G. C. Necula. Proof carrying code. In Proceedings of the 24th ACM
SIGPLAN-SIGACT Annual Symposium on Principles of Programming
Languages POPL 1997, Paris, France, pages 106–119, New York, NY,
USA, 1997. ACM.

[19] A. Sabelfeld and A. Myers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, 21(1):5–19, 2003.

[20] A. Sabelfeld and D. Sands. Declassification: Dimensions and principles.
Journal of Computer Security, 17(5):517–548, 2009.

6

