
Supporting Drafts for Enterprise Modeling

Hector Florez, Mario Sánchez, Jorge Villalobos
Department of Systems and Computing Engineering

Universidad de los Andes
Bogotá, Colombia

Email: {ha.florez39, mar-san1, jvillalo}@uniandes.edu.co

Abstract—Enterprise models are built for representing one
enterprise under study. These models require a lot of information,
which frequently is not totally available before starting the
construction of the model. Modelers create enterprise models
based on information provided by different kinds of sources
through observations. However, these sources could be insufficient
or the information could be incomplete or incorrect regarding
specific aspects of the enterprise. As a result, the construction
process of enterprise models requires the creation of drafts of
models allowing modelers to create an initial draft and to refine
it when new and correct enterprise information is obtained. One
draft of one enterprise model is a temporal model, which can
include incomplete or imperfect elements. Drafts can include
supporting data, which is additional data regarding the sources
observed. In this paper we present a proposal for creating
and managing drafts of enterprise models using ArchiMate as
modeling language.

Keywords—Enterprise Architecture, Model Driven Engineering,
Drafts of Models

I. INTRODUCTION

Enterprises increasingly depend on Information Technolo-
gies (IT) and require support in order to achieve their business
goals. Enterprise Architecture (EA) is used as a guide to the de-
sign of enterprise organizational structure, business processes,
information systems, and infrastructure [1], [2]. EA projects
rely on the construction of models [3] that abstract the en-
terprise for understanding its organizational and technological
aspects [1], [4]; typically, these models focus on structural
aspects of the enterprise [5], and serve for documentation,
communication, analysis, discussion, and design purposes [6].
EA models are usually big, complex and its construction has
a high level of difficulty.

In the construction process of one enterprise model, a team
of modelers identifies and classifies several available sources
of enterprise information (e.g., persons, documents, meetings).
Modelers obtain the required enterprise information consulting
aforementioned sources through observations (e.g., interviews,
reviews, meeting acts). They start the modeling process using
one modeling language such as ArchiMate [7], which is one
of the most extended enterprise modeling language, while
being a graphical language defined with one metamodel that
incorporates active structure elements, behavior elements, and
passive structure elements.

Sources of enterprise information have different levels of
precision and reliability. Usually, it is possible to find several
sources with contradictory information, imprecision, opposite
points of view, conflicts of interest, lack of information, and

other kind of situations that obstruct the EA model construc-
tion. In addition, it is possible to find information that was
true in the past, but sources cannot confirm whether it remains
valid. Next, modelers must extract, consolidate, and interpret
information from several sources in order to express the infor-
mation in the model. This task requires the creation of the EA
model through drafts that allow creating the model including
additional information regarding the modeling process (e.g.,
which sources provided the information, when the information
was obtained, which information is not obtained yet). As a
result, drafts do not conform to the metamodel of the modeling
language (e.g., ArchiMate); then, the modeling tool used to
create these drafts should be able to support this condition.

One draft of one enterprise model is a temporal model,
which can include incomplete elements or imperfect infor-
mation [8] (i.e., imperfect elements, imperfect attributes, and
imperfect relations). In the modeling process, modelers create
drafts of the enterprise model based on the information ob-
tained. Then, they validate and refine these drafts based on the
necessary sources in order to complete the model. In addition,
drafts can include supporting data, presenting information
regarding the sources consulted by the modeler, when he/she
decides to create one incomplete or imperfect element. The
supporting data helps modelers to understand how the elements
in the model can be refined and can present 1) an interpretation
of the information obtained by sources; 2) the time stamp for
informing when the information was obtained; 3) the source
reliability; and 4) the certainty level of a source. Once the
elements in the draft are refined, the correspondent supporting
data can be deleted in order to produce the final EA model.

In this paper we present a proposal for creating and
managing drafts of enterprise models using ArchiMate as
modeling language. The proposal has been implemented in
iArchiMate, which is a modeling tool that allows creating drafts
using one graphical editor, while including supporting data
for all elements using another graphical editor. The supporting
data includes specific components for describing 1) sources of
enterprise information, 2) observations of sources made by the
modeler, and 3) facts provided by observations.

The rest of the paper is structured as follows. Section II
describes enterprise modeling process in the EA context and
presents the kinds of sources of enterprise information. Section
III describes drafts of enterprise models and presents our
solution strategy for creating and managing drafts. In section
IV, we present our tool for creating and managing drafts using
ArchiMate as modeling language. Finally, section V concludes
the paper.978-1-4799-6717-9/14/$31.00 ©2014 IEEE

II. ENTERPRISE MODELING

EA projects require the construction of one model to
represent the relation between business and IT [5]. The EA
model must conform to one metamodel, which abstracts the
enterprise concepts through typed elements, which contain
attributes and relations. One EA model is usually big be-
cause enterprises have a large number of elements and it is
complex because they have a large number of typed relations
between their elements. The EA model is built by modelers
through direct and indirect observation. Direct observation is
the action in which modelers obtain enterprise information
without consulting sources. Indirect observation requires the
participation of sources (e.g., persons, documents, meetings).
In the construction process of the EA model, modelers con-
sult sources through observations (e.g., interviews, reviews,
meeting acts), where each observation provides facts, which
provide the enterprise information to create elements, relations,
and attributes in the model. EA models require a modeling
language such as ArchiMate, which has become the standard
language for describing and visualizing EA models involving
different domains. It has been designed to provide a complete
graphical representation of EAs over time and is closely linked
to TOGAF standard [9].

In most cases, it is impossible to obtain all required
information before creating the correspondent EA model. This
condition is presented for several different reasons. Some of
these reasons are: 1) enterprise information is provided by
several different sources (e.g., executive employees, technical
employees, contracts); 2) several specific information must be
provided by more than one source and those sources provide
contradictory information (e.g., the CIO asserts that one new
server is already installed, but one technical employee asserts
that the server has not been delivered by the provider); 3)
sources that should provide specific information, are not able
to provide it (e.g., the CTO does not know which device
is used by the CRM); 4) sources provide information that
does not properly represent some elements of the enterprise
(e.g., the CTO asserts that the availability of one device,
which must be a number, is “High”); 5) sources are not
reliable for providing specific information (e.g., the CEO
provides information related with the technology department).
In Florez et al. [8], sources, which provide information that
cannot be used to create the model correctly have been called
imperfect sources and have been classified as incorrect, which
are sources that provide false information; imprecise, which
are sources that provide ranges of values instead of a unique
value for one specific numeric attribute; inconsistent, which
are sources that provide more than one value for one attribute
or relation; vague, which are sources that provide linguistic
values instead of a numeric value for one specific numeric
attribute (e.g., availability=“High”); and uncertain, which are
sources that provide one value with a certainty degree. In
addition, observations have been classified as incomplete, when
the source does not provide any information.

III. DRAFTS OF ENTERPRISE MODELS

The construction of one EA model is a complex task and
could require a long time to be completed. When modelers
decide to build an EA model, they obtain enterprise infor-
mation from aforementioned sources (which can be imperfect)

through observations. However, due to the size of an enterprise,
usually modelers start their model construction before obtain-
ing all required information. Then, modelers start creating a
draft of the enterprise model, which is temporal and could
include additional data regarding its incomplete elements or
its imperfect information. We call the additional information
supporting data as documentation in the model that contains
details about the sources, observations, and facts involved
in the incomplete or imperfect component. In this work, all
drafts conform to ArchiMate metamodel. Thus, each draft
contains elements that represent ArchiMate concepts (e.g.,
BusinessProcess, ApplicationComponent), relations that repre-
sent ArchiMate relations (e.g., UsedBy, Flows), and attributes
that can belong to elements or relations.

Based on the supporting data, modelers can understand
the reasons why such a draft has been created; thus, he/she
can identify which new source can be observed or which
new observation of one already observed source can be made
in order to obtain the required information for refining the
draft. The supporting data can contain 1) sources such as
Persons, Meetings (which have associated the correspondent
persons), Documents, and Direct Observations (forming in-
formation regarding the enterprise provided by the modeler);
2) Observations, which determines the time stamp where the
source was consulted; and 3) facts such as Instance Fact,
Attribute Fact, and Relation Fact, which allow to document
the values obtained from observations. Then, based on the
supporting data, modelers can have specific information for
refining the draft. Once the modeler refines one element in
the draft by completing it or by removing its imperfection,
the correspondent supporting data can be removed as well. At
the end of the modeling process, when the draft does not have
incomplete or imperfect elements and does not have supporting
data, the draft becomes the final enterprise model.

A. Related Work

Some approaches have been based on the use of drafts
in order to properly obtain their results. For instance, Erol
et al., [10] present a proposal for collaborative drafting of
business processes models. In this work, the authors assert
that modeling in a general sense is a process that could consist
the following activities: 1) elicitation, which refers to the act
of collecting information from domain experts; 2) modeling,
which is the transformation of the informal specification into
a formal specification; and 3) validation, which refers to the
act of evaluating the congruence of the formal specification
regarding the informal specification. Based on these activities,
this work presents a case study of a wiki supported drafting
of process models, which includes a wiki engine developed to
support collaboration in processes for building models.

Some other approaches allow the creation of enterprise
models with different levels of abstraction. For instance, the
work of Frank [11] proposes a multi-perspective enterprise
modeling (MEMO), which is an approach able to represent
different perspectives of the enterprise. MEMO offers a frame-
work that includes common enterprise abstractions. The enter-
prise perspectives are represented by the following languages:
1) Strategy Modeling Language (MEMO-SML) which includes
concepts from strategic planning; 2) Organization Modeling

Language (MEMO-OrgML) which serves to model organiza-
tional concepts; and 3) Object-Oriented Modeling Language
(MEMO-OML) which allows the specification of information.
MEMO architecture contains the specification and integration
of modeling languages. The architecture is extensible allowing
the specification of additional languages. Although MEMO
does not take the creation of drafts nor the representation
of imperfect information into consideration, its multi-level
extensibility allows to include this imperfect information by
updating the metamodels. Also, metamodels can be updated in
order to include information for documenting the construction
process of the enterprise model.

B. Solution Strategy

In order to build drafts using ArchiMate as modeling lan-
guage, we use the distinction between ontological conformance
(based on the relation between the model and metamodel in
terms of their meaning) and linguistic conformance (based on
the relation between the model and metamodel in terms of
their structure) [12]. In addition, we achieve the linguistic
conformance by the construction of a generic intermediate
metamodel that serves to represent any type, attribute and
relation; and the ontological conformance by the definition of
semantic rules [8]. Figure 1 illustrates the proposed strategy.
Modeling process starts with the creation of one draft µ0.
This draft is refined by the iteration γ1, which produces the
µ1. The iteration γn produces the µn. All drafts M={µ0, µ1
. . .µn} conforms linguistically to one generic metamodel called
Intermediate Metamodel (iMM) (See Figure 2). Each of µi does
not conform ontologically to the ArchiMate metamodel, but
it semi-conforms ontologically to the ArchiMate metamodel.
Ontological semi-conformance is the relation between µi and
the ArchiMate metamodel in which instances of the µi can in-
clude imperfect information [8]. Moreover, in order to include
supporting data, iMM has been extended in one metamodel
called Extended Intermediate Metamodel (EiMM) (See Figure
3), which serves to represent sources, observations, and facts.

ArchiMate

EiMM

Linguistic
conformance

Ontological
semi-conformance

μ0 μ1 μn
γ1 γ2 γn

Fig. 1. Strategy for Creating and Managing Drafts of Models.

IV. TOOL FOR CREATING AND MANAGING DRAFTS OF
ARCHIMATE MODELS

This proposal includes a tool to build drafts of ArchiMate
models. This tool named iArchiMate is based on the Eclipse
Modeling Framework Project (EMF)1 and the Graphical Mod-
eling Framework Project (GMF)2. In addition, for the creation
of the required GMF components, the project EuGENia3

was used. iArchiMate serves to create drafts of ArchiMate

1http://www.eclipse.org/modeling/emf/
2http://www.eclipse.org/modeling/gmp/
3http://www.eclipse.org/epsilon/doc/eugenia/

models (µi) that conforms to EiMM. This editor is also
capable of validating the ontological semi-conformance of the
µi regarding the ArchiMate metamodel providing assistance
to the user. iArchiMate also allows importing and exporting
models compatible with the tool Archi4. This function has
been implemented to take advantage of the great amount of
EA models already created using this tool.

A. Intermediate Metamodel iMM

iMM, which is presented in Figure 2, provides a basic
linguistic framework for the definition of drafts of ArchiMate
models (µi). iMM has the type called Model which contains
all other elements. The abstract type Component is special-
ized by the types Group, which serves to create groups in the
draft and Element, in order to represent element instances
of the draft. In the type Element, there is an attribute named
typeName with the attribute type ElementTypeName that
is an enumeration, which contains the name of all possible
elements in the ArchiMate metamodel (e.g., BusinessProcess,
ApplicationComponent). The type Relation serves to rep-
resent relations between elements. In the type Relation,
there is an attribute named typeName with the attribute type
RelationTypeName that is an enumeration, which contains
the name of all possible relations in the ArchiMate metamodel
(e.g., UsedBy, Flows). The type Attribute serves to rep-
resent the actual values of attributes contained in elements
and relations of the draft. The types AbsentElement,
ImperfectAttribute and ImperfectRelation serve
to represent, respectively, imperfect elements, imperfect at-
tributes, and imperfect relations of the draft. The imperfection
type of imperfect attributes and relations (e.g., range of values,
linguistic value, instance set) are specified by the attribute
imperfectionType.

Fig. 2. Intermediate Metamodel iMM.

B. Supporting Data on Drafts of ArchiMate Models

Modelers can include supporting data on drafts in order
to represent the way in which the information to construct
the draft was gathered. Supporting data includes the enterprise
sources, observations that refer to source consulting, and facts
produced by observations. In order to include all elements
described above, we complemented the iMM creating one

4http://archi.cetis.ac.uk/

Fig. 3. Extended Intermediate Metamodel EiMM.

metamodel named Extended Intermediate Metamodel (EiMM)
(see Figure 3) for the tool iArchiMate; thus, the draft (µi)
now conforms linguistically to EiMM. The EiMM includes
all elements presented in iMM and the following additional
types: 1) SupportingData serves as container for all
other additional elements; 2) Source and its specializa-
tions DirectObservation, Document, Meeting, and
Person serve to represent sources; 3) Observation serves
to represent interviews, document revisions, and meeting
acts; and 4) Fact and its specializations InstanceFact,
AttributeFact, and RelationFact serve to create reg-
isters with information obtained about elements, attributes, or
relations of the enterprise. By means of the EiMM, iArchiMate
allows modelers to include all necessary supporting data into
the draft. Thus, each element can have one supporting data
component, for specifying all data related with the enterprise
information obtained, when the modeler decides to include a)
the correspondent element as imperfect element or b) imperfect
attributes, or imperfect relations in the correspondent element,
or c) imperfect attributes in one relation of the correspondent
element.

C. iArchiMate Editors

iArchiMate has been designed and developed in order
to provide two editors: one main editor (See Figure 4) for
modeling drafts of ArchiMate models; and one secondary
editor (See Figure 6) for modeling the supporting data of the
draft. In the main editor, modelers can include several instances
of one specific component representing the supporting data,
which is used to open the secondary editor (See Figure 5).

The editor for modeling drafts has the following charac-
teristics: 1) all elements are drawn with rounded squares that
include the correspondent icon and color established in the
ArchiMate specification; 2) all relations have the graphical
representation established in the ArchiMate specification; 3)
attributes, which can belong to elements or relations, can be
displayed through an additional tab in the properties view; 4)
imperfect elements are drawn with blue squares that include

the correspondent ArchiMate icon; 5) imperfect relations are
drawn with a blue color and the correspondent ArchiMate
representation; 6) imperfect attributes are displayed through an
additional tab in the properties view; 7) components for open-
ing the supporting data editor are drawn with gray rounded
squares; and 8) relations from elements to supporting data
components are drawn with a blue dashed arrow that contains
a filled square in the source.

The editor for modeling supporting data can be opened
through a double click on the supporting data component
placed in the draft. This editor allows the inclusion of all
elements related with supporting data, where each element is
differentiated by icons and contains the required attributes for
documenting all possible information regarding the enterprise
information obtained by the enterprise sources. In addition,
relations are drawn by dashed arrows and can only be placed
from sources to observations and from observations to facts.

a)Model

b)Imperfect Relation Properties

c)Imperfect Attributes Tab

Fig. 4. Example of Draft of Enterprise Model.

Figure 4 presents one example of one draft of ArchiMate
model. In this example, the modeler wants to create one
enterprise model for documenting the characteristics of the
business processes, application components, and devices. The
modeler received the following information. 1) The CTO,
whose name is “John Q” asserts that the Device DataBase
Server has one year of warranty and its availability
is 95%. 2) The CIO, whose name is “Paul R” asserts that
the Device DataBase Server has two years of warranty
and it is only UsedBy the ApplicationComponent
CRM, which is UsedBy the BusinessProcess Sign Up.

3) The Purchase Contract of the DataBase Server denotes
that its availability is 98% and that it is config-
ured to be UsedBy the ApplicationComponent ERP.
4) In one Technology Committee, its members determined
that the Device Windows Server is UsedBy the ERP,
which is UsedBy the BusinessProcess Add to Cart
and Online Payment. Also, the Windows Server is UsedBy
the ApplicationComponent POS; however, they are
not sure whether the POS has already been used. 5) The
Server Administrator, whose name is “Petter S” asserts
that the Device Unix Server is UsedBy the CRM with
90% of certainty degree. 6) In one Business Committee, its
members determined that the BusinessProcess Online
Purchase is composed by the processes Sign Up, Add to
Cart, and Online Payment. Then, the modeler based on
the enterprise information obtained through those enterprise
sources, creates a draft presented in Figure 4a, where the
relations UsedBy from the Device Unix Server to the
ApplicationComponent CRM and from the Device
DataBase Server to the ApplicationComponent ERP
are imperfect because they have associated a certainty de-
gree (See Figure 4b); the Device DataBase Server has the
imperfect attributes availability with a numeric range
value, and warranty with no value (See Figure 4c); and
the ApplicationComponent POS is an imperfect element
because its existence is not confirmed.

Continuing with the example, the modeler wants to include
supporting data for those elements that contain any imperfect
information. Then, the modeler includes in the draft three sup-
porting data components. The first supporting data is related
with the Unix Server because it contains the imperfect relation
UsedBy to the CRM. The second supporting data is related
with the DataBase Server because it contains the imperfect
attributes availability and warranty, and the imperfect
relation UsedBy to the ERP. The third supporting data is
related with POS because it was placed in the draft as imperfect
element (See Figure 5).

Fig. 5. Example of Draft with Supporting Data

Figure 6 presents the complete supporting data for the
Device DataBase Server presented in Figure 5. In this case,
the modeler obtained the enterprise information related with
the DataBase Server through the following sources: the CTO
“John Q”, the CIO “Paul R”, and the Purchase Contract
of the DataBase Server. The Person “John Q” provided
in the Observation Interview1 the AttributeFact At-
tFact1 that includes information about the availability
and the AttributeFact AttFact2 that includes informa-

tion about the warranty. The Person “Paul R” provided
in the Observation Interview2 the AttributeFact
AttFact3 that includes information about the warranty
and the RelationFact RelFact1 that includes information
about the relations UsedBy to the CRM and ERP. The
Observation Review1 of the Document Contract pro-
vided the AttributeFact AttFact4 that includes informa-
tion about the availability and the RelationFact
RelFact2 that that includes information about the relation
UsedBy to the ERP. Based on all facts, the modeler included
in the draft the following information: 1) the imperfect attribute
availability with the range of values [95,98]; 2) the
imperfect attribute warranty with no value represented with
the symbol ?; 3) the imperfect relation UsedBy to the ERP;
and 4) the relation UsedBy to the CRM.

Fig. 6. Example of Supporting Data

D. Conformance Validation

iArchiMate handles linguistic conformance using EMF’s
validation engine, and ontological semi-conformance using
iArchiMate’s validation engine, which is based on Epsilon
Validation Language (EVL)5. Also, iArchiMate’s validation
engine includes several rules for validating the correct format
for imperfect elements, attributes and relations.

Listing 1 presents a fragment of the validation script
for validating ontological semi-conformance with the Archi-
Mate metamodel. In this validation, we verify the attribute
typeName in elements and relations, and sources and targets
for relations. It has the following lines: 1) Lines 1 and 10
establish the EClass Element and Relation respectively
from the EiMM as context. 2) Lines 2, 11, and 18 set the
names of the rules. 3) Lines 3 to 6 and 12 to 15 check
the correct value for the attribute typeName. 4) Lines 7
and 16 present messages for informing the wrong selection
of the typeName. 5) Lines 19 to 33 validate the correct
source and target of Composition relations. In the listing
we include only two conditions and we only present the rule
for the relation Composition; nevertheless, there are several
conditions and there is one rule for each possible ArchiMate
relation (e.g., UsedBy, Triggering). 6) Line 34 presents a
message for informing that the relation Composition cannot
be created with the source and target assigned.

5http://www.eclipse.org/epsilon/doc/evl/

Listing 1. Fragment of Validation Script
1 c o n t e x t Element {
2 c o n s t r a i n t hasRightElementTypeName {
3 check{
4 i f (s e l f .typeName.name == ’NotSelected’)
5 {re turn false;} e l s e {re turn true;}
6 }
7 message: ’The required feature \’typeName\’ of ⤦

Ç \’<Model>::<Element>\’ cannot have the value ⤦
Ç \’NotSelected\’’

8 }
9 }

10 c o n t e x t Relation {
11 c o n s t r a i n t hasRightRelationTypeName {
12 check{
13 i f (s e l f .typeName.name == ’NotSelected’)
14 {re turn false;} e l s e {re turn true;}
15 }
16 message: ’The required feature \’typeName\’ of ⤦

Ç \’<Model>::<Relation>\’ cannot have the value ⤦
Ç \’NotSelected\’’

17 }
18 c r i t i q u e validateComposition {
19 check {
20 i f (s e l f .typeName.name == ’Composition’) {
21 i f (s e l f .source.typeName.name == ⤦

Ç s e l f .target.typeName.name) {
22 re turn true;
23 } e l s e i f (s e l f .source.typeName.name == ⤦

Ç ’BusinessRole’) {
24 var validTargetNames = Collection {
25 ’BusinessCollaboration’,
26 ’BusinessInterface’};
27 i f (validTargetNames.includes(⤦

Ç s e l f .target.typeName.name))
28 re turn true;
29 }
30 re turn false;
31 }
32 re turn true;
33 }
34 message : ’Cannot create Composition from ’ + ⤦

Ç s e l f .source.typeName.name + ’ to ’ + ⤦
Ç s e l f .target.typeName.name

35 }
36 }

a)Model

b)Problems report

Fig. 7. Example of iArchiMate validation.

Figure 7a presents an example of the validation result.
In this example, there are the following problems: 1) the
imperfect relation UsedBy from the DataBase Server to the
ERP does not have assigned certainty degree; 2) the imperfect
attribute availability in the DataBase Server has format
error. 3) the imperfect element named POS does not have
selected any ArchiMate concept; 4) the Realization from
the DataBase Server to the CRM is not allowed in the

ArchiMate specification; and 5) the relation from the Windows
Server cannot target to the element named POS while the
target element does not have one ArchiMate concept assigned.
Figure 7b shows the Problems view with details about the
correspondent errors and warnings.

V. CONCLUSIONS

In the EA context, the ArchiMate specification allows
creating models that satisfy the characteristics of the enter-
prises. However, models are built using information provided
by various and heterogeneous sources. These sources usually
do not have all required or completely reliable information, so
enterprise models might not represent the enterprise correctly.

Drafts are temporal models that can represent and structure
incomplete and imperfect information while enabling modelers
to keep all the information provided by sources about elements,
attributes, and relations. In addition, modelers can also include
supporting data in order to provide further documentation that
is useful to understand how the draft has been created and how
it can be refined.

The solution strategy presented in this paper allows creating
drafts of ArchiMate models that conform linguistically to
EiMM and semi-conform ontologically with the ArchiMate
metamodel. Drafts are created using the tool iArchiMate,
which is composed with one editor that supports imperfect
elements, attributes and relations, and one editor that supports
the creation of supporting data.

REFERENCES

[1] M. Lankhorst, Enterprise architecture at work: Modelling, communica-
tion and analysis. Springer, 2013.

[2] M.-E. Iacob and H. Jonkers, “Quantitative analysis of enterprise ar-
chitectures,” Interoperability of Enterprise Software and Applications,
2006.

[3] M. Buschle, J. Ullberg, U. Franke, R. Lagerström, and T. Sommestad,
“A tool for enterprise architecture analysis using the prm formalism,”
in Information Systems Evolution. Springer, 2011, pp. 108–121.

[4] R. Lagerström, U. Franke, P. Johnson, and J. Ullberg, “A method
for creating enterprise architecture metamodels–applied to systems
modifiability analysis,” International Journal of Computer Science and
Applications, vol. 6, no. 5, pp. 89–120, 2009.

[5] S. Buckl, M. Buschle, P. Johnson, F. Matthes, and C. M. Schweda,
“A meta-language for Enterprise Architecture analysis,” Enterprise,
Business-Process and Information Systems Modeling, pp. 511–525,
2011.

[6] S. Kurpjuweit and R. Winter, “Viewpoint-based Meta Model Engineer-
ing.” in Proceedings of the 2nd International Workshop on Enterprise
Modelling and Information Systems Architectures, 2007, pp. 143–161.

[7] The Open Group, ArchiMate 2.0 Specification. Van Haren Publishing,
2012.

[8] H. Florez, M. Sánchez, and J. Villalobos, “Embracing Imperfection in
Enterprise Architecture Models,” in Proceedings of the 6th IFIP WG
8.1 Working Conference on the Practice of Enterprise Modeling (PoEM
2013). ACM, 2013, pp. 8–17.

[9] The Open Group, TOGAF Version 9.1. Van Haren Publishing, 2011.
[10] S. Erol and G. Neumann, “A Case-Study of Wiki-Supported Collabo-

rative Drafting of Business Processes Models,” in Business Informatics
(CBI), 2013 IEEE 15th Conference on, 2013, pp. 382–390.

[11] U. Frank, “Multi-perspective enterprise modeling: foundational con-
cepts, prospects and future research challenges,” Software & Systems
Modeling, pp. 1–22, 2012.

[12] T. Kuhne, “Matters of (meta-) modeling,” Software and Systems Mod-
eling, vol. 5, no. 4, pp. 369–385, 2006.

