
Towards a Component-based Software Architecture
for Genetic Algorithms

Leidy Garzón Rodrı́guez
lpgarzonr@correo.udistrital.edu.co

Henry Alberto Diosa
hdiosa@udistrital.edu.co

Universidad Distrital Francisco José de Caldas
Bogotá, Colombia

Sergio Rojas-Galeano
srojas@udistrital.edu.co

Abstract—We are motivated on the idea of whether a
component-based software architecture for evolutionary
algorithms would be feasible and advantageous. We believe that
depending on the evolutionary computation model, software
implementing these algorithms can be robustly built assembling
loosely-coupled computational blocks, likewise hardware
systems that are built gluing together prefabricated electronic
components. We set about to develop an initial architecture
with a focus on the genetic algorithm. The paper describes the
analysis and design principles used, the obtained architecture,
the resulting component specification and closes with a discussion
about the benefits of this approach, as well as initial steps
towards its implementation in a user-friendly platform for
component-based visual programming. The complete portfolio
of software models is available at:

http://arquisoft.udistrital.edu.co/portal/web/guest/proy-compAG

Index Terms—Architecture and Software Engineering,
Component-based Development, Genetic Algorithms

I. INTRODUCTION

This study is grounded on the question of whether a
component-based software architecture would be feasible and
advantageous when developing evolutionary algorithms. Our
premise is that for general-purpose optimization, these kind
of algorithms share a common architecture consisting of self-
contained loosely-coupled computational units. Thus, depen-
ding on the evolutionary computation (EC) model the algo-
rithm implements, a system could be developed by reusing
or refining self-contained units from a specialized library of
EC software components, resembling how hardware systems
are built from prefabricated electronic components kits (see
Figure 1 for a fanciful depiction of a genetic algorithm (GA)
system built following that approach).

We embarked on this initiative focused on GA, maybe
the best-known instance of evolutionary algorithms. Several
libraries and frameworks have been developed for GA most of
them over the object oriented computation model or structured
programming as GALib [12], CamGASP [14], JGAP [11],
JCLEC [17], ECJ [19], Opt4J [9], DEAP [3], HeuristicLab
[18] and Open BEAGLE [5]. Some few initiatives as OS-
GiLiath [6], MALLBA [1] and EO [7] in spite of being

Figure 1. A fictitious depiction of an electronic component-based GA

component-based libraries, they only support an scripting
mechanism for component assemblage. It should be pointed
out, that, a software solution that meets the modularity non-
functional quality aspect does not imply necessarily that it
conforms to a component-based software architecture in the
sense discussed in section II.
The paper is organized with the initial sections describing the
analysis and design principles that guided our development,
the middle sections describing the architecture and component
specifications, and the final sections discussing benefits of this
approach, as well as describing initial steps towards its im-
plementation in a user-friendly platform of visual component
programming. The complete portfolio of software models we
developed is publicly available in [4].

II. COMPONENT-BASED DEVELOPMENT

A software component is a unit of composition with contrac-
tually specified interfaces and explicit context dependencies
only. A software component can be deployed independently
and is subject to third-party composition [15]. In order to
make a component available it is necessary to define either
a required or provided interface, and in order to use it, it
is only necessary to have other components complying with
said interfaces. We have chosen UML2.0 [8] as a modeling
language for our component architecture (see Figure 2), where
an external representation (Component Diagram) depicts com-
ponents as black-boxes exposing their contractual requiring
and providing interfaces, and an internal representation (Use978-1-4799-6717-9/14/$31.00 c© 2014 IEEE

Case and Activity Diagrams) specify in detail the structural
and behavior models of the component.

Figure 2. UML Graphic representation of a software component

A. Component-based Development Workflow

In order to obtain the architecture, we adopted the workflow
showed in Figure 3, originally proposed in [2]. The stages in
the workflow are represented with boxes, the wide arrows indi-
cate precedence order between stages. Each box correspond to
a sequence of activities, with thin arrows representing the flow
of input/output artifacts shared among them. The Component
specifications and architecture of the GA system that we are
looking for, is the output artifact of the Specification stage. In
order to obtain this artifact we first need to define the Use case
model and the Business concept model from the Requirements
stage.

Figure 3. Component-based development workflow (adapted from [2])

III. A COMPONENT-BASED GA

Evolutionary algorithms can be seen as general-purpose
population-based stochastic search tools for optimization [10],
sharing a common generic sequence of steps: (i) Encode the
initial population, (ii) Evaluate population fitness using a cost
function, (iii) Apply evolution operators, (iv) Go to step (ii)
until termination, (v) Return the best solution emerged. In
the specific case of GA, variations in the selection methods,
genetic operators, solution coding/decoding and cost function
types are associated to those generic steps. As said before,
we believe at the end they can be seen as independent
computational units that are assembled during the algorithm
execution (“evolution”). We anticipate that reusing some of
these components or refining their specifications would be
useful in the design/implementation of other known or new
evolutionary algorithms.

With a view to specify the initial version of our architecture,
we consider the most relevant approaches, representations
and operators found on the GA literature [10] which are
summarized in Table I. Additionally, we contemplated some

utility components needed for experimentation purposes (cali-
bration and performance tester), other solution representations
as permutations and discrete domains and theirs respective GA
operators would be included in future versions of this work.

Table I
RELEVANT COMPUTATIONAL TECHNIQUES ASSOCIATED TO GAS

Name Type
Solution encoding Binary, Real
Evolutionary approach Elitism, Steady-State
Initial population Random, Seeded, Biased
Selection Tournament, Roulette Wheel
Crossover Binary:One point, Two points

Real:AX, BLX-α, BLX -α− β, WHX
Custom

Mutation Binary:One bit, Multiple bits
Real:Truncate Gauss
Custom

IV. ARCHITECTURE DEVELOPMENT

A. Requirements Stage

The purpose of this stage is to gather the description of
the functionalities and information flow required to run a GA
according to the expectations of a final user. Our analysis
identified 58 requirements, which are summarised in Table II.
Detailed technical documents describing these requirements
are available in [4]. The elicited requirements were used to
design the Business concept model and a Use case models
that are the basis to build the GA component specification.

The Business concept model defines a mutually agreed
vocabulary of concepts among the stakeholders of the system.
For instance, in the model we specified the concept cost
function as the function to be optimized by the GA; this
concept would be also a surrogate of the more popular fitness
function concept.

A Use case on the other hand, is a specification of the
interactions between the users and the functional requirements
of the GA. In our analysis we identified 38 use cases which
are summarized in Table II (and also available in [4]).

Table II
SUMMARY OF ELICITED REQUIREMENTS AND USE CASES

Type Number Number
requirements use cases

Evolutionary approach 3 4
Initial population 7 5
Selection 3 5
Crossover 8 5
Mutation 5 5
Tester+Calibrator 13 3
GA Configuration 7 11
Non-Functional 12 NA
Total 58 38

Use cases represent low-level usage scenarios that can be
combined to specify higher-levels of functionality. In order to
fulfill a requirement, many use cases could be identified, and
some of them may be used again to fulfill other requirements.
This means that use cases can be packaged according to their

related functionalities. For instance, Figure 4 shows a use case
model related to the creation of the initial population. It can be
seen in this example that single use cases can be connected
with �include� and �extend� relations. One use case may
include another, meaning that at some point of the usage
scenario the completion of the other use case is needed. In
contrast, one use case may extend another, meaning that him
is an alternative choice to complete the base use case. In the
example, when Generate a biased population is carried out,
the system reuses the Generate random population scenario
in order to sample random chromosomes constrained to the
bias criteria defined by the user. On the other hand, when
Generate initial population scenario is carried out, the user
must choose one of three available extensions representing
different methods for creating the initial population. Notice
that the model itself can be iteratively refined, that is, new
versions of the released specification can be obtained by
including or extending new additional use case models, in
order to account for new or custom-tailored functionalities.

Figure 4. A Use case model

For each identified Use case, an Activity diagram specifies
the actions and flow of information involved in the com-
pletion of the required functionality (for example Figure 5
is the activity diagram corresponding to the Generate initial
population use case). Actions are represented as round corner
boxes whereas input and output parameters as small rectangles.
Notice that boxes with an ∞ indicate a drill-down specification
is available.

B. Specification stage
This stage involves the identification of the components

and the corresponding interfaces that will comprise the initial
architecture also known as prescriptive architecture. These
would be split into two layers: GA System Components and
the GA Business Components (see Figure 6). The first layer
of components and interfaces is derived from the GA Use
case model, whereas the second layer is derived from the GA
Business concept model. The GA System Components play
a double role: interaction with the user (or other external
systems) and interaction with the GA Business Components.
As so, these are the components and interfaces responsible of
collecting running parameters, coordinating the execution and
visualising the results obtained by the GA.

Figure 5. Generate initial population activity diagram

In order to identify the Business Interfaces we use the
business concept model to help us focus on the information
and associated processes that the system will need to manage,
we refine the business model into a Business type model
representing the specific business information that must be
held by the system, next we decide which types we consider to
be Core Types. A core type is defined as a business type that
has independent existence within the business, the criteria to
identified cores can be found in [2]. Finally, we create one
business interface and assign responsibilities for each core
type. As can be seen from Figure 7, the type SolutionRep has
no mandatory associations, so we characterize it as a core, at
that time we define the ISolutionRepMgt interface which will
manage the information represented by the SolutionRep, note
that this interface will have the responsibility of encode and
decode solutions.

Otherwise, to identify the System Interfaces we define one
interface for each use case that requires user interaction, then
we go through the activity diagram which represent the steps
of the use case considering whether or not there are system
responsibilities that must be modeled. If so, we will need to
include the operations in the interface.

The Figure 8 shows a subset of the use cases model,
selecting those that will generate a system interface, observe
that at the top of the Figure, we define the ISolutionRepSetup
system interface according to the steps of the Use Case
Represent Solution. In the first step we see that the system
must provide a list of the available domains supported by the
system, once the user define a specific domain, the system
will provide a list of the available encoding types for the
selected domain, as a final step the system interface provide
the apply settings() operation, this last interface operation will
notifies if the Solution Representation was successful defined
through the return parameters.

The GA Business Components, carry out the core computa-
tion of the GA (evolutionary approaches, genetic operators

Figure 6. Component-based GA prescriptive architecture

and complementary techniques such as sampling, statistics
gathering, etc). Observe that the core components in the Busi-
ness layer (GA, cost function, solution representation, tester
and calibrator) have companion user-interaction components.
These are assembled together through their corresponding in-
terfaces: provided interfaces for those components responsible
of parameter collection, and/or required interfaces for those
responsible of monitoring and visualising the execution of the
GA.

The specification of the GA System components is dependent
on the chosen user-interaction model (command-based, GUI,
scripts, Web-service); we will defer the discussion about such
model to Section IV-C.

In the remainder of this section we shall focus on describing
briefly the GA Business components.

• GAMgr. The core component that controls the flow of
execution of the GA. It comprises 7 required interfaces:
IGASetup manages the setup of the running parameters
for the algorithm, including choices for initial population
method, genetic operators probabilities, number of gene-
rations and so on; IInitPopMgt manages the creation
of the initial population; IParentsSelectorMgt,
ICrossoverMgt, IMutatorMgt are managers of
the genetic operators; ICostFunctionMgr manages
the definition and evaluation of the cost function;
ISolutionRepMgt manages the encoding and deco-
ding of the candidate and best solution representation.
Besides, this component comprises 1 provided interface,
IGAMgt, which manages services for execution, statis-
tics gathering and best solution retrieval (for illustration
purposes the bottom-right corner of Figure 6 shows the
service specification of the latter interface).

• CostFunctionMgr. The component that provides
the ICostFunctionMgt interface to the GAMgr.
It requires an ICostFunction interface from the
UIConstFunction component in the user-interaction
layer.

• SolutionRepMgr. The component that provides
the ISolutionRepMgt interface to the GAMgr.
It requires an ISolutionRep interface from the
UISolutionRep component in the user-interaction
layer.

• InitPopMgr. The component that provides the
IInitPopMgt interface to the GAMgr. It is expected
that the choice of creation method and its parameters
should be supplied through the IGASetup interface of
the GAMgr component.

• SelectionMgr, CrossoverMgr, MutationMgr.
The components that provide the ISelectionMgt,
ICrossoverMgt and IMutationMgt interfaces to
the GAMgr. Again, the parameters of these operators
should be supplied through the IGASetup interface of
the GAMgr component.

• TesterMgr, CalibratorMgr. These components
manage useful services for testing and calibrating the
execution of a GA. The parameters of these compo-
nents should be supplied through the ITestMgr and
ICalibratorMgr interfaces respectively, which addi-
tionally are able to trace cumulative statistics of experi-
ments including several runs of the algorithm.

C. Provisioning stage

The aim of the provisioning stage is to supply the compo-
nents specified in the architecture so as to eventually be able
to deploy the system. There are several ways of acquiring such
components, either by building them, reusing from a third
part or modifying existing components. In any case, at this
point implementation decisions are to be taken related to the
target runtime environment, including programming language,
user-interaction technology, operating system, etc. Our first
choice in this respect is keen towards an object-oriented
implementation, with a GUI allowing interaction with the user,
and ideally within a visual environment where components can
be graphically assembled, i.e. glued together.

Figure 7. Identification of the ISolutionRepMgt Business interface

Figure 8. Use cases map to system interfaces

On the other hand, we were aware of an open-source
component-based framework for machine learning called
Orange [20] which meets two of our aforementioned expec-
tations: support for component implementation using object-
oriented programming in Python and a visual environment for
components assemblage. Regrettably the Orange framework
does not feature a library devoted to GAs or other stochastic
search-based optimization algorithms, although recently, an
extension toolbox known as Goldenberry was proposed to
support Estimation of Distribution Algorithms [13].

As a result of this exploration we decided to carry out
the provision stage in the following way: (i) Reusing visual
canvas of Orange and GUI components also known as Orange
Widgets; (ii) Reusing cost function and tester components
from the EDA algorithms of Goldenberry; and (iii) Building
the reminder components of the architecture. The latter is the
aim of the second part of our project which is currently work
in progress.

It is important to clarify that the provisioning stage involve
a series implementation decisions that would define the
realization of the prescriptive architecture into a descriptive
architecture [16]. In our case, the following aspects were taken
into account during the decision-taking:

• The concept of Widget is instrumental to enable user
interaction within the Orange visual canvas; therefore it
must be taken into consideration in our architecture.

• The latter was achieved by embedding our business
components within widget components relatives, and
delegating business interfaces to the containing widgets.

• Widgets expose system interfaces and GUIs to the user;
those system interfaces are also delegated by the business
components providing operations to setup the parameters
required.

• We do not include internal design for the components to
be reused (CostFunctionWidget and TesterWidget).

As a result, we obtained the Component-based GA
descriptive architecture shown in Figure 9, where widgets
components would be implemented as the visual elements that
can be dragged onto the Orange visual programming canvas,
wrapping the logic needed to provide graphical user interface
to our business components. As a final note, observe that the
system interfaces which are outside of the system boundary,
keep correspondence with the use cases shown in Figure 8.

V. CONCLUSIONS

We have described a feasible architecture for general-
purpose component-based GAs. The architecture is open and
independent of runtime or implementation decisions. The
modularity exhibited by this architecture makes it easily
extensible to other kinds of stochastic-search population-
based optimization algorithms, through the design of new
components that can be replaced and/or assembled with the
ones here described. For example, in a GA context the
SolutionRepMgr component is intended to perform the
genotype-phenotype mapping inherent to a chromosome re-
presentation, but it could also be straightforwardly redesigned
to carry out the encoding/decoding computation of other type
of Evolutionary Algorithms.

Our work is currently focused on the Provisioning stage,
with an aim to build a library of GA software components
that may be useful for developers and researches alike,
within a friendly visual programming environment (Orange
and Goldenberry 2.0).

As a final note, possible avenues of research may include
extending and implementing the architecture with new compo-
nents accounting for additional GA functionalities (preventing

Figure 9. Component-based GA descriptive architecture

premature convergence, parallelism, multi-objective optimiza-
tion). We are also considering in the future, the problem of
evolving specific-purpose Evolutionary Algorithms by auto-
matically orchestrating the software components available in
such library.

REFERENCES

[1] E. Alba, G. Luque, J. Garcia;Nieto, G. Ordonez, and G. Leguizamon.
Mallba, a software library to design efficient optimisation algorithms.
In Int. J. Innov. Comput. Appl., pages 74–85, 2007.

[2] J. Cheesman and J. Daniels. UML Components: A Simple Process for
Specifying Component-Based Software. Component Software Series.
Addison-Wesley, Londres, 2000.

[3] F.-M. De Rainville, F.-A. Fortin, M.-A. Gardner, M. Parizeau, and
C. Gagné. Deap: A python framework for evolutionary algorithms. In
Proceedings of GECCO2012, pages 85–92, 2012.

[4] H. Diosa, S. Rojas-Galeano, and L. Garzon. A
component-based GA architecture, 2014. Available at
http://arquisoft.udistrital.edu.co/portal/web/guest/proy-compAG.

[5] B. Dmitry. Open beagle: a generic framework for evolutionary compu-
tations. Genetic Programming and Evolvable Machines, 12(3):329–331,
September 2011.

[6] P. Garcı́a-Sánchez, M. I. Garcı́a Arenas, A. M. Mora, P. A. Castillo,
C. Fernandes, P. de las Cuevas, G. Romero, J. González, and J. J. Merelo.
Developing services in a service oriented architecture for evolutionary
algorithms. In Proceedings of GECCO2013, pages 1341–1348, 2013.

[7] M. Keijzer, J. J. M. Guervós, G. Romero, and M. Schoenauer. Evolving
objects: A general purpose evolutionary computation library. In Selected
Papers from the 5th European Conference on Artificial Evolution, pages
231–244, London, UK, UK, 2002. Springer-Verlag.

[8] C. Luer and D. Rosenblum. Uml component diagrams and software
architecture. In Workshop at the 23rd International Conference on
Software Engineering, volume 1, pages 1–4, Irvine, California, 2001.

[9] M. Lukasiewycz, M. Glaß, F. Reimann, and J. Teich. Opt4J - A Modular
Framework for Meta-heuristic Optimization. In Proceedings of GECCO
2011, pages 1723–1730, Dublin, Ireland, 2011.

[10] S. Luke. Essentials of Metaheuristics. Lulu, second edition, 2013.
Available for free at http://cs.gmu.edu/∼sean/book/metaheuristics/.

[11] K. Meffert and N. Rotstan. Jgap, java genetic algorithms package.
Available at http://jgap.sourceforge.net.

[12] M. I. of Technology. Galib, a c++ library of genetic algorithm
components. Available at http://lancet.mit.edu/ga/, 1995.

[13] S. Rojas-Galeano and N. Rodriguez. Goldenberry: Eda visual program-
ming in orange. In Proceedings of GECCO2013, pages 1325–1332,
Amsterdam, The Netherlands, 2013. ACM.

[14] R. N. Shaw, M. B. Grieve, A. T. Carpenter, and R. Ansorge. Cambridge
genetic algorithmb software package. Recovered on July 3rd, 2013, from
http://www.bss.phy.cam.ac.uk/˜rea1/camGASP/camGASP.pdf, 2001.

[15] C. Szyperski. Independently Extensible Systems - Software Engineer-
ing Potential and Challenges. Queensland University of Technology,
Brisbane, Australia, 1996.

[16] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software Architecture:
Foundations, Theory, and Practice. Wiley Publishing, 2009.

[17] S. Ventura, C. Romero, A. Zafra, J. Delgado, and C. Hervas. Jclec: a java
framework for evolutionary computation. Soft Computing, 12(4):381–
392, October 2007.

[18] S. Wagner, G. Kronberger, A. Beham, M. Kommenda, A. Scheibenpflug,
E. Pitzer, S. Vonolfen, M. Kofler, S. Winkler, V. Dorfer, and M. Affen-
zeller. Advanced Methods and Applications in Computational Intelli-
gence, volume 6, chapter Architecture and Design of the HeuristicLab
Optimization Environment, pages 197–261. Springer, 2014.

[19] D. R. White. Software review: The ecj toolkit. Genetic Programming
and Evolvable Machines, 13(1):65–67, Mar. 2012.

[20] B. Zupan and J. Demsar. Orange: Data mining fruitful and fun. 15th
International Multiconference on Information Society, 2012.

